A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in lab...A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.展开更多
In 1979, unavailability of MFWS (Main Feedwater System) in TMI (Three Mile Island) Unit-2 happened in the United States. To make it worse, due to malfunction of Isolation Control Valves in AFWS (Auxiliary Feedwat...In 1979, unavailability of MFWS (Main Feedwater System) in TMI (Three Mile Island) Unit-2 happened in the United States. To make it worse, due to malfunction of Isolation Control Valves in AFWS (Auxiliary Feedwater System), the supply of cooling water to SGs (Steam Generators) was delayed approximately 8 minutes compared to AOP (Abnormal Operating Procedure). In the long run, on account of deferred heat sink provision to SGs, the reactor core was melted partially. It was the first critical accident in the US commercial NPP (Nuclear Power Plant) history. Hence, after TMI Accident, US NRC (Nuclear Regulatory Committee) suggested more than one hundred alternatives to improve safety and reliability of NPP. Among these countermeasures, one proposal was related to training area. It was SAT (Systematic Approach to Training) methodology. Therefore, the goal of SAT is the enhancement of NPP stability through training point of view. Since the appearance of SAT in the nuclear industry, it has acquired the unwavering position in the US NPP training field. Meanwhile, significance of NPP decommissioning has been soared up in South Korea since the announcement of Kori Unit-1 decommissioning decision. According to the proclaimed plan from Korean government, Kori Unit-1 is scheduled to be decommissioned from June, 2017. Under this circumstance, nurturing sufficient number of NPP decommissioning engineers is one of the most urgent issues in South Korean nuclear industry. Hence, to elevate efficiency and consistency of training quality, SAT methodology can be a reliable solution for the training of decommissioning engineers. For this reason, the present study aims to design SAT based NPP decommissioning engineer training in South Korea.展开更多
Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing in...Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).展开更多
Culture teaching is an inseparable part of an English major program to enhance students' intercultural competence. Yet, in practice, culture teaching does not receive due attention. More often than not, culture is ta...Culture teaching is an inseparable part of an English major program to enhance students' intercultural competence. Yet, in practice, culture teaching does not receive due attention. More often than not, culture is taught and intercultural competence is developed randomly by individual teachers. The practice lacks cooperation, unity and coherence at the curriculum level. This paper proposes a systematic approach to plan, organize and coordinate culture teaching and to enhance intercultural competence for English major students. The theoretical assumption is a language is inseparable from its relative culture and the foreign culture should be openly addressed in actual teaching.展开更多
Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testin...Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testing, nutrient adsorption study, and pot and field experiments to verify the results of soil testing, with a conventional soil test (CST) used for comparison. The ASI method found the moderately acidic soil (W01) to be N and P deficient; the strongly acidic soil (W04) to be N, K and S deficient; and the slightly acidic soil (W09) to be N, K, S, Cu, Mn, and Zn deficient. The CST method showed that W01 had P, B and Cu deficiencies; W04 had N, P and S deficiencies; and W09 had N, P, S, B, Cu, and Zn deficiencies. There were differences between the two methods. Among the two indicator plants selected, the response of sorghum on the three representative acidic soils was more closely related to the ASI results than that of sweet pepper.展开更多
Despite many scholarly debates on Chinese opera,the study of how opera hit rock bottom remains scarce.Therefore,this article addresses this reason through a case study of Henan Opera.Informed by a systematic approach,...Despite many scholarly debates on Chinese opera,the study of how opera hit rock bottom remains scarce.Therefore,this article addresses this reason through a case study of Henan Opera.Informed by a systematic approach,there have been various improvements,good and bad criticisms,as well as affirmations in regard to opera.The lack of the Chinese opera spirit is the root of the difficulties in the development of Chinese opera.展开更多
The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in th...The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in the multi-physics sense,but involves other physical domains such as fluid and thermal.This paper summarizes the mechatronic approach to modeling.Linear graphs facilitate the development of state-space models of mechatronic systems,through this approach.The use of linear graphs in mechatronic modeling is outlined and an illustrative example of sound system modeling is given.Both time-domain and frequency-domain approaches are presented for the use of linear graphs.A mechatronic model of a multi-physics system may be simplified by converting all the physical domains into an equivalent single-domain system that is entirely in the output domain of the system.This approach of converting(transforming)physical domains is presented.An illustrative example of a pressure-controlled hydraulic actuator system that operates a mechanical load is given.展开更多
Global Software Development (GSD) is a well established field of software engineering with the benefits of a global environment. Software Project Management (SPM) plays a key role in the success of GSD. As a resul...Global Software Development (GSD) is a well established field of software engineering with the benefits of a global environment. Software Project Management (SPM) plays a key role in the success of GSD. As a result, the need has arisen to study and evaluate the downsides of SPM for GSD, to thereby pave the way for the development of new methods, techniques, and tools with which to tackle them. This paper aims to identify and classify research on SPM approaches for GSD that are available in the literature, to identify their current weaknesses and strengths, and to analyze their applications in industry. We performed a Systematic Mapping Study (SMS) based on six classification criteria. Eighty-four papers were selected and analyzed. The results indicate that interest in SPM for GSD has been increasing since 2006. As a class of approaches, the most frequently reported methods (40%) are those used for coordination, planning, and monitoring, along with estimation techniques that can be used to better match a distributed project. SPM for GSD requires further investigation by researchers and practitioners, particularly with respect to cost and time estimations. These findings will help overcome the challenges that must to be considered in future SPM research for GSD, especially regarding collaboration and time-zone differences.展开更多
The construction industry actively adopts the concept of sustainability to not only minimize the impact on the environment but also increase social and economic benefits through accepting sustainable design and constr...The construction industry actively adopts the concept of sustainability to not only minimize the impact on the environment but also increase social and economic benefits through accepting sustainable design and construction practices.This growing trend in sustainable construction requires both new knowledge and new skills for sustainability,in addition to conventional knowledge,such as scheduling,estimating,contracting,etc.Due to this paradigm change in the construction industry,construction programs in the U.S.A.should offer sustainable construction courses in order to teach sustainable knowledge,technologies and skills to their students before their entrance into industry.The purpose of this study is to develop a sustainable construction course designed for university construction programs using a systematic course development approach divided into three stages including preparation,development,and improvement.The course described in this paper is used to illustrate the systematic development process and can serve as an example for faculty at other universities on how to use such a method.During the preparation stage,a syllabus review is conducted in order to recognize and evaluate current sustainable construction courses offered by construction programs.In addition,in-depth literature review is performed to identify current trends in sustainable construction courses and related research.The development stage consists of:creating the framework for a sustainable construction course,choosing the goals and objectives for this course,choosing the contents of the course,organizing the chosen contents of the course,and planning the course schedule.At the improvement stage,the proposed course is improved,reviewed,and evaluated by experts from both the construction industry and academia through a detailed feedback process.From this systematically developed sustainable construction course,students in construction programs can learn basic knowledge of sustainability and the importance of sustainable design and construction.They will be exposed to different sustainable building rating systems such as Leadership in Energy and Environmental Design(LEED)and Green Globes,collaborative skills among construction participants,and the advantages and pitfalls of sustainable construction.In addition,construction students who become leaders in the industry will change the nature of the construction industry and society to help not only minimize environmental impacts caused by construction activities but also to secure our earth.展开更多
基金The study was supported by PPI/PPIC China Program (No. HB-19) and Wetland Laboratory Opening Foundation of Hubei Province (No. HNKFJ20021301).
文摘A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.
文摘In 1979, unavailability of MFWS (Main Feedwater System) in TMI (Three Mile Island) Unit-2 happened in the United States. To make it worse, due to malfunction of Isolation Control Valves in AFWS (Auxiliary Feedwater System), the supply of cooling water to SGs (Steam Generators) was delayed approximately 8 minutes compared to AOP (Abnormal Operating Procedure). In the long run, on account of deferred heat sink provision to SGs, the reactor core was melted partially. It was the first critical accident in the US commercial NPP (Nuclear Power Plant) history. Hence, after TMI Accident, US NRC (Nuclear Regulatory Committee) suggested more than one hundred alternatives to improve safety and reliability of NPP. Among these countermeasures, one proposal was related to training area. It was SAT (Systematic Approach to Training) methodology. Therefore, the goal of SAT is the enhancement of NPP stability through training point of view. Since the appearance of SAT in the nuclear industry, it has acquired the unwavering position in the US NPP training field. Meanwhile, significance of NPP decommissioning has been soared up in South Korea since the announcement of Kori Unit-1 decommissioning decision. According to the proclaimed plan from Korean government, Kori Unit-1 is scheduled to be decommissioned from June, 2017. Under this circumstance, nurturing sufficient number of NPP decommissioning engineers is one of the most urgent issues in South Korean nuclear industry. Hence, to elevate efficiency and consistency of training quality, SAT methodology can be a reliable solution for the training of decommissioning engineers. For this reason, the present study aims to design SAT based NPP decommissioning engineer training in South Korea.
基金the European Union through the Network of Excellence Hybrid Control (HYCON) under contract IST-511368.
文摘Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).
文摘Culture teaching is an inseparable part of an English major program to enhance students' intercultural competence. Yet, in practice, culture teaching does not receive due attention. More often than not, culture is taught and intercultural competence is developed randomly by individual teachers. The practice lacks cooperation, unity and coherence at the curriculum level. This paper proposes a systematic approach to plan, organize and coordinate culture teaching and to enhance intercultural competence for English major students. The theoretical assumption is a language is inseparable from its relative culture and the foreign culture should be openly addressed in actual teaching.
基金Project supported by the Potash & Phosphate Institute/Potash & Phosphate Institute of Canada (PPI/PPIC) (No. Chongqing-02).
文摘Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testing, nutrient adsorption study, and pot and field experiments to verify the results of soil testing, with a conventional soil test (CST) used for comparison. The ASI method found the moderately acidic soil (W01) to be N and P deficient; the strongly acidic soil (W04) to be N, K and S deficient; and the slightly acidic soil (W09) to be N, K, S, Cu, Mn, and Zn deficient. The CST method showed that W01 had P, B and Cu deficiencies; W04 had N, P and S deficiencies; and W09 had N, P, S, B, Cu, and Zn deficiencies. There were differences between the two methods. Among the two indicator plants selected, the response of sorghum on the three representative acidic soils was more closely related to the ASI results than that of sweet pepper.
文摘Despite many scholarly debates on Chinese opera,the study of how opera hit rock bottom remains scarce.Therefore,this article addresses this reason through a case study of Henan Opera.Informed by a systematic approach,there have been various improvements,good and bad criticisms,as well as affirmations in regard to opera.The lack of the Chinese opera spirit is the root of the difficulties in the development of Chinese opera.
基金supported by research grants from the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in the multi-physics sense,but involves other physical domains such as fluid and thermal.This paper summarizes the mechatronic approach to modeling.Linear graphs facilitate the development of state-space models of mechatronic systems,through this approach.The use of linear graphs in mechatronic modeling is outlined and an illustrative example of sound system modeling is given.Both time-domain and frequency-domain approaches are presented for the use of linear graphs.A mechatronic model of a multi-physics system may be simplified by converting all the physical domains into an equivalent single-domain system that is entirely in the output domain of the system.This approach of converting(transforming)physical domains is presented.An illustrative example of a pressure-controlled hydraulic actuator system that operates a mechanical load is given.
基金the research project MPHR PPR1-09the Moroccan MESRSFC and CNRST for their supporta part of the GINSENC-UCLM(TIN2015-70259-C2-1-R)and GINSENG-UMU(TIN2015-70259-C2-2-R)projects,supported by the Spanish Ministry of Economy,Industry,and Competitiveness and European FEDER funds
文摘Global Software Development (GSD) is a well established field of software engineering with the benefits of a global environment. Software Project Management (SPM) plays a key role in the success of GSD. As a result, the need has arisen to study and evaluate the downsides of SPM for GSD, to thereby pave the way for the development of new methods, techniques, and tools with which to tackle them. This paper aims to identify and classify research on SPM approaches for GSD that are available in the literature, to identify their current weaknesses and strengths, and to analyze their applications in industry. We performed a Systematic Mapping Study (SMS) based on six classification criteria. Eighty-four papers were selected and analyzed. The results indicate that interest in SPM for GSD has been increasing since 2006. As a class of approaches, the most frequently reported methods (40%) are those used for coordination, planning, and monitoring, along with estimation techniques that can be used to better match a distributed project. SPM for GSD requires further investigation by researchers and practitioners, particularly with respect to cost and time estimations. These findings will help overcome the challenges that must to be considered in future SPM research for GSD, especially regarding collaboration and time-zone differences.
文摘The construction industry actively adopts the concept of sustainability to not only minimize the impact on the environment but also increase social and economic benefits through accepting sustainable design and construction practices.This growing trend in sustainable construction requires both new knowledge and new skills for sustainability,in addition to conventional knowledge,such as scheduling,estimating,contracting,etc.Due to this paradigm change in the construction industry,construction programs in the U.S.A.should offer sustainable construction courses in order to teach sustainable knowledge,technologies and skills to their students before their entrance into industry.The purpose of this study is to develop a sustainable construction course designed for university construction programs using a systematic course development approach divided into three stages including preparation,development,and improvement.The course described in this paper is used to illustrate the systematic development process and can serve as an example for faculty at other universities on how to use such a method.During the preparation stage,a syllabus review is conducted in order to recognize and evaluate current sustainable construction courses offered by construction programs.In addition,in-depth literature review is performed to identify current trends in sustainable construction courses and related research.The development stage consists of:creating the framework for a sustainable construction course,choosing the goals and objectives for this course,choosing the contents of the course,organizing the chosen contents of the course,and planning the course schedule.At the improvement stage,the proposed course is improved,reviewed,and evaluated by experts from both the construction industry and academia through a detailed feedback process.From this systematically developed sustainable construction course,students in construction programs can learn basic knowledge of sustainability and the importance of sustainable design and construction.They will be exposed to different sustainable building rating systems such as Leadership in Energy and Environmental Design(LEED)and Green Globes,collaborative skills among construction participants,and the advantages and pitfalls of sustainable construction.In addition,construction students who become leaders in the industry will change the nature of the construction industry and society to help not only minimize environmental impacts caused by construction activities but also to secure our earth.