The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in disp...The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in dispute. Generally, HP eclogite involves garnet, omphacite, hornblendes and quartz, with or without glaucophane, zoisite and phengite. The garnet has compositional zoning with XMg increase, XCa and XMn decrease from core to rim, which indicates a progressive metamorphism. The phase equilibria of the HP eclogite modeled by the P-T pseudosection method developed recently showed the following: (1) the growth zonation of garnet records a progressive metamorphic PT path from pre-peak condition of 1.9-2.1 GPa at 508~C-514~C to a peak one of 2.3-2.5 GPa at 528~C-531~C for the HP eclogite; (2) the peak mineral assemblage is garnet+omphacite+glaucophane+quartz_+phengite, likely paragenetic with lawsonite; (3) the extensive hornblendes derive mainly from glaucophane, partial omphacite and even a little garnet due to the decompression with some heating during the post-peak stage, mostly representing the conditions of about 1.4-1.6 GPa and 580~C-640~C, and their growth is favored by the dehydration of lawsonite into zoisite or epidote, but most of the garnet, omphacite or phengite in the HP eclogite still preserve their compositions at peak condition, and they are not obviously equilibrious with the hornblendes.展开更多
The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis...The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis(EPMA), X-ray diffraction(XRD) analysis and selected area electron diffraction(SAED) pattern analysis of transmission electron microscopy(TEM). Partial isothermal section of Mg-Zn-Ce system in Mg-rich corner was identified. The results show that there is one ternary compound (T-phase) in Mg-Zn-Ce system. The T-phase is a linear ternary compound in which the content of Ce is about 7.7% (molar fraction); while the content of Zn is changed from 19.3% to 43.6% (molar fraction). The crystal structure of T-phase is C-centered orthorhombic. In addition, one two-phase region of Mg+T-phase and one three-phase region of Mg+T-phase+MgZn(Ce) exist in the Mg-rich corner of Mg-Zn-Ce system at 350 ℃.展开更多
Alloys of Mg-Zn-La system in Mg rich corner were prepared, and the phase relationship was investigated at different temperatures such as 200, 300 and 350 ℃ by scanning electron microscopy(SEM), X-ray diffraction(XRD)...Alloys of Mg-Zn-La system in Mg rich corner were prepared, and the phase relationship was investigated at different temperatures such as 200, 300 and 350 ℃ by scanning electron microscopy(SEM), X-ray diffraction(XRD) and electron probe microanalysis with energy dispersive X-ray spectroscopy (EPMA). Two types of phase equilibrium were identified at the different temperatures. One is two-phase equilibrium contained the Mg solid solution and T-phase. The other is three-phase equilibrium which contained the Mg solid solution, MgZn phase and T-phase. T-phase was stable as the temperature changed. The La content in T-phase is constant which is about 8±0.3% (atom fraction); but the Mg content and Zn content of that is changed, and the Zn content in T-phase was from 16.1% to 44%. The solubility of La in MgZn phase was increased from 1.2% to 1.6% as the temperature increasing from 200 to 350 ℃.展开更多
The transformation from graphite to turbostratic graphite by means of the treatment with high energy ball milling was investigated by X ray powder diffraction method. It is believed that the size effect of nano cry...The transformation from graphite to turbostratic graphite by means of the treatment with high energy ball milling was investigated by X ray powder diffraction method. It is believed that the size effect of nano crystal leads to this transformation. A possible transformation mechanism is proposed from the change of the eletronic structure of the hexagonal plane of the carbon atoms.展开更多
基金funded by the National Natural Science Foundation of China (No.40525006 and 40372032).
文摘The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in dispute. Generally, HP eclogite involves garnet, omphacite, hornblendes and quartz, with or without glaucophane, zoisite and phengite. The garnet has compositional zoning with XMg increase, XCa and XMn decrease from core to rim, which indicates a progressive metamorphism. The phase equilibria of the HP eclogite modeled by the P-T pseudosection method developed recently showed the following: (1) the growth zonation of garnet records a progressive metamorphic PT path from pre-peak condition of 1.9-2.1 GPa at 508~C-514~C to a peak one of 2.3-2.5 GPa at 528~C-531~C for the HP eclogite; (2) the peak mineral assemblage is garnet+omphacite+glaucophane+quartz_+phengite, likely paragenetic with lawsonite; (3) the extensive hornblendes derive mainly from glaucophane, partial omphacite and even a little garnet due to the decompression with some heating during the post-peak stage, mostly representing the conditions of about 1.4-1.6 GPa and 580~C-640~C, and their growth is favored by the dehydration of lawsonite into zoisite or epidote, but most of the garnet, omphacite or phengite in the HP eclogite still preserve their compositions at peak condition, and they are not obviously equilibrious with the hornblendes.
基金Project(50471025) supported by the National Natural Science Foundation of ChinaProject(20052028) supported by the Natural Science Foundation of Liaoning Province, ChinaProject(2006BAE04B09-7) supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period
文摘The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis(EPMA), X-ray diffraction(XRD) analysis and selected area electron diffraction(SAED) pattern analysis of transmission electron microscopy(TEM). Partial isothermal section of Mg-Zn-Ce system in Mg-rich corner was identified. The results show that there is one ternary compound (T-phase) in Mg-Zn-Ce system. The T-phase is a linear ternary compound in which the content of Ce is about 7.7% (molar fraction); while the content of Zn is changed from 19.3% to 43.6% (molar fraction). The crystal structure of T-phase is C-centered orthorhombic. In addition, one two-phase region of Mg+T-phase and one three-phase region of Mg+T-phase+MgZn(Ce) exist in the Mg-rich corner of Mg-Zn-Ce system at 350 ℃.
基金the National Natural Science Foundation of China (50471025)Natural Science Foundation of Lia-oning Province (20052028)National Key Technology R &D Program(2006BAE04B09-7)
文摘Alloys of Mg-Zn-La system in Mg rich corner were prepared, and the phase relationship was investigated at different temperatures such as 200, 300 and 350 ℃ by scanning electron microscopy(SEM), X-ray diffraction(XRD) and electron probe microanalysis with energy dispersive X-ray spectroscopy (EPMA). Two types of phase equilibrium were identified at the different temperatures. One is two-phase equilibrium contained the Mg solid solution and T-phase. The other is three-phase equilibrium which contained the Mg solid solution, MgZn phase and T-phase. T-phase was stable as the temperature changed. The La content in T-phase is constant which is about 8±0.3% (atom fraction); but the Mg content and Zn content of that is changed, and the Zn content in T-phase was from 16.1% to 44%. The solubility of La in MgZn phase was increased from 1.2% to 1.6% as the temperature increasing from 200 to 350 ℃.
文摘The transformation from graphite to turbostratic graphite by means of the treatment with high energy ball milling was investigated by X ray powder diffraction method. It is believed that the size effect of nano crystal leads to this transformation. A possible transformation mechanism is proposed from the change of the eletronic structure of the hexagonal plane of the carbon atoms.