期刊文献+
共找到384篇文章
< 1 2 20 >
每页显示 20 50 100
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
1
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) takagi-sugeno(t-s fuzzy model.
下载PDF
Soft Computing of Biochemical Oxygen Demand Using an Improved T–S Fuzzy Neural Network 被引量:4
2
作者 乔俊飞 李微 韩红桂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1254-1259,共6页
It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the k... It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods. 展开更多
关键词 BIOCHEMICAL oxygen DEMAND WAstEWAtER treatment ts fuzzy neural network K-MEANs clustering
下载PDF
Modeling and Stability Analysis for Non-linear Network Control System Based on T-S Fuzzy Model 被引量:2
3
作者 ZHANG Hong FANG Huajing 《现代电子技术》 2007年第5期138-141,144,共5页
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ... Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design. 展开更多
关键词 模糊模型 非线性系统 时延 网络控制系统 通信技术
下载PDF
基于模糊T-S型内模PID控制算法的无刷直流电机仿真分析
4
作者 孙崇智 吴永伟 +2 位作者 安建民 杨佳 郭伟伟 《现代电子技术》 北大核心 2024年第24期18-24,共7页
针对无刷直流电机(BLDCM)双闭环控制调速系统的控制响应速度慢、转速波动较大等问题,提出一种模糊神经网络与内模控制相结合的驱动方式。该方式利用Matlab/Simulink来构建一种基于BLDCM和控制器的电梯一体式限速器仿真模型,得到BLDCM的... 针对无刷直流电机(BLDCM)双闭环控制调速系统的控制响应速度慢、转速波动较大等问题,提出一种模糊神经网络与内模控制相结合的驱动方式。该方式利用Matlab/Simulink来构建一种基于BLDCM和控制器的电梯一体式限速器仿真模型,得到BLDCM的速度、转矩响应曲线。仿真分析和实验结果均表明,模糊T-S型内模PID控制算法在响应速度、转速误差、抗干扰能力和控制精度等性能方面优于内模PID控制算法与常规双闭环PID控制系统。该研究可为模糊神经网络T-S型内模PID算法在电梯一体式限速器上的应用积累经验。 展开更多
关键词 无刷直流电机 模糊t-s 内模PID控制 双闭环控制系统 模糊神经网络 电梯限速器
下载PDF
基于T-S模糊神经网络的光伏发电机组自动控制
5
作者 杨振睿 沈主浮 +2 位作者 孙辰 蔡斌 姜宽 《机械与电子》 2024年第2期35-39,共5页
光照情况变化会使光伏发电机组功率呈现不稳定性,加大光伏发电机组控制难度,为此,设计了基于T-S模糊神经网络的光伏发电机组自动控制方法。构建光伏阵列数学模型,分析在均匀和不均匀2种光照情况下光伏发电机组特性曲线。以分析结果为依... 光照情况变化会使光伏发电机组功率呈现不稳定性,加大光伏发电机组控制难度,为此,设计了基于T-S模糊神经网络的光伏发电机组自动控制方法。构建光伏阵列数学模型,分析在均匀和不均匀2种光照情况下光伏发电机组特性曲线。以分析结果为依据,采用T-S模糊神经网络构建光伏发电机组自动控制模型。为保证良好的控制效果,引入定比因子优化隶属度函数,输出最佳跟踪结果,结合最佳跟踪结果和自动控制模型实现光伏发电机组自动控制。测试结果显示,该方法能够完成光伏阵列特性分析,控制效果好。 展开更多
关键词 t-s模糊神经网络 光伏发电机组 自动控制 特性曲线 最大功率点 光照情况
下载PDF
Reliable Fuzzy Control for a Class of Nonlinear Networked Control Systems with Time Delay 被引量:23
6
作者 FENG Jian WANG Shen-Quan 《自动化学报》 EI CSCD 北大核心 2012年第7期1091-1099,共9页
关键词 网络控制系统 状态时滞 模糊控制 非线性 LYAPUNOV泛函 线性矩阵不等式 网络诱导时延 执行器故障
下载PDF
Fault detection for nonlinear networked control systems based on fuzzy observer 被引量:6
7
作者 Zhangqing Zhu Xiaocheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期129-136,共8页
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont... Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective. 展开更多
关键词 nonlinear networked control system (NNCs fault detection t-s fuzzy model state observer time-delay.
下载PDF
Flatness predictive model based on T-S cloud reasoning network implemented by DSP 被引量:4
8
作者 ZHANG Xiu-ling GAO Wu-yang +1 位作者 LAI Yong-jin CHENG Yan-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2222-2230,共9页
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita... The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter. 展开更多
关键词 t-s CLOUD reasoning neural network CLOUD MODEL FLAtNEss predictive MODEL hardware implementation digital signal PROCEssOR genetic ALGORItHM and simulated annealing ALGORItHM (GA-sA)
下载PDF
Optimum Setting Strategy for WTGS by Using an Adaptive Neuro-Fuzzy Inference System
9
作者 Yang Hu Jizhen Liu Zhongwei Lin 《Energy and Power Engineering》 2013年第4期404-408,共5页
With the popularization of wind energy, the further reduction of power generation cost became the critical problem. As to improve the efficiency of control for variable speed Wind Turbine Generation System (WTGS), the... With the popularization of wind energy, the further reduction of power generation cost became the critical problem. As to improve the efficiency of control for variable speed Wind Turbine Generation System (WTGS), the data-driven Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to establish a sensorless wind speed estimator. Moreover, based on the Supervisory Control and Data Acquisition (SCADA) System, the optimum setting strategy for the maximum energy capture was proposed for the practical operation process. Finally, the simulation was executed which suggested the effectiveness of the approaches. 展开更多
关键词 WIND Energy Data Processing Adaptive tAKAGI-sUGENO (t-s) fuzzy Neuro-network
下载PDF
遗传算法在T-S模糊模型辨识中的应用 被引量:11
10
作者 廖俊 朱世强 +1 位作者 林建亚 任德祥 《信息与控制》 CSCD 北大核心 1997年第2期140-145,150,共7页
给出了T-S模糊模型的一种模糊神经网络实现方法.提出了采用遗传算法优化网络参数,实现T-S模型的辨识.给出了参数优化的详细过程,并用仿真实例证实了这种方法的有效性.成功地将神经网络。
关键词 遗传算法 t-s模糊模型 模糊神经网络 系统辨识
下载PDF
水下机器人T-S型模糊神经网络控制 被引量:17
11
作者 梁霄 张均东 +3 位作者 李巍 郭冰洁 万磊 徐玉如 《电机与控制学报》 EI CSCD 北大核心 2010年第7期99-104,共6页
针对水下机器人模糊神经网络控制器运算量大和对强外界扰动的鲁棒性差及存在滞后性的问题,提出基于混合学习算法的水下机器人T-S型模糊神经网络控制方法。采用免疫遗传算法离线优化和神经网络自学习在线调整隶属函数的参数,从而减少神... 针对水下机器人模糊神经网络控制器运算量大和对强外界扰动的鲁棒性差及存在滞后性的问题,提出基于混合学习算法的水下机器人T-S型模糊神经网络控制方法。采用免疫遗传算法离线优化和神经网络自学习在线调整隶属函数的参数,从而减少神经网络的运算量,增强水下机器人对环境变化的反应能力。采用T-S模型,由后件网络动态调整模糊规则,提高控制系统的适应性。通过某微小型水下机器人的仿真和外场实验验证方法的可行性和优越性。实验结果表明,控制器对外界扰动具有较强的鲁棒性,保证即使在恶劣情况下,控制性能仍保持在较高水平。 展开更多
关键词 水下机器人 模糊神经网络控制 免疫遗传算法 混合学习算法 t-s模型
下载PDF
基于T-S模糊模型的RBF网络的自适应学习算法 被引量:12
12
作者 李战明 王君 康爱红 《兰州理工大学学报》 CAS 北大核心 2004年第2期82-85,共4页
针对多维模糊推理中的推理规则庞大和参数难辨识的问题,提出一种基于T S模糊模型的RBF神经网络的自适应学习算法.该算法不仅能动态调节T S型模糊RBF网络的隐节点数,还能使网络的数据中心值自适应变化,有较好的自学习能力和优化能力.仿... 针对多维模糊推理中的推理规则庞大和参数难辨识的问题,提出一种基于T S模糊模型的RBF神经网络的自适应学习算法.该算法不仅能动态调节T S型模糊RBF网络的隐节点数,还能使网络的数据中心值自适应变化,有较好的自学习能力和优化能力.仿真结果验证了该算法是有效和可行的,表明此T S型模糊RBF网络不仅可以快速逼近任意多变量非线性函数,而且具有良好的自适应能力. 展开更多
关键词 t-s模糊模型 RBF网络 自适应学习算法 模糊推理 隐节点数
下载PDF
基于T-S模糊神经网络的采空塌陷危险性判别 被引量:11
13
作者 张连杰 武雄 +1 位作者 谢永 吴晨亮 《现代地质》 CAS CSCD 北大核心 2015年第2期461-465,共5页
采空区地面塌陷的危险性判别受地质因素、采矿因素等多重因素的影响,各因素往往影响程度不同且部分因素之间又相互联系。为了能够较准确地对采空塌陷危险性进行评估,引入了T-S模糊神经网络模型。以北京西山地区采空塌陷为例,根据塌陷特... 采空区地面塌陷的危险性判别受地质因素、采矿因素等多重因素的影响,各因素往往影响程度不同且部分因素之间又相互联系。为了能够较准确地对采空塌陷危险性进行评估,引入了T-S模糊神经网络模型。以北京西山地区采空塌陷为例,根据塌陷特点,分别选取了地质构造复杂程度、覆盖层类型、第四系覆盖层厚度、覆岩强度、煤层倾角、采深采厚比、采空区埋深、采空区空间叠置层数8项影响因素作为评价指标,并建立了分级标准。将单因素评价指标均匀线性插值作为训练样本,建立了T-S模糊神经网络判别模型。利用训练好的神经网络模型对选取的8处采空区进行评估,结果分别为:Ⅰ、Ⅱ、Ⅲ、Ⅱ、Ⅲ、Ⅱ、Ⅲ、Ⅱ,结果与实际情况吻合。研究表明,利用T-S模糊神经网络研究采空塌陷危险性是可行的。 展开更多
关键词 采空区 地面塌陷 评价 t-s模糊神经网络模型
下载PDF
基于T-S故障树和贝叶斯网络的模糊可靠性评估方法 被引量:87
14
作者 姚成玉 陈东宁 王斌 《机械工程学报》 EI CAS CSCD 北大核心 2014年第2期193-201,共9页
针对贝叶斯网络方法存在的贝叶斯网络模型和节点条件概率表难以构造、根节点故障率和故障概率数据难以精确获取等不足,以及T-S故障树分析方法存在的计算复杂、不能进行反向推理等不足,提出基于T-S故障树和贝叶斯网络的模糊可靠性评估方... 针对贝叶斯网络方法存在的贝叶斯网络模型和节点条件概率表难以构造、根节点故障率和故障概率数据难以精确获取等不足,以及T-S故障树分析方法存在的计算复杂、不能进行反向推理等不足,提出基于T-S故障树和贝叶斯网络的模糊可靠性评估方法:利用T-S故障树构造贝叶斯网络模型、T-S门规则构造节点条件概率表;用模糊数描述节点的多种故障状态,模糊子集描述节点各故障状态下的故障率、故障概率;结合贝叶斯网络推理给出在仅知根节点故障状态条件下,叶节点各故障状态的发生概率、根节点状态重要度;以及已知根节点各故障状态的故障率、故障概率模糊子集条件下,叶节点各故障状态的故障率、故障概率模糊子集,以及根节点模糊重要度、后验概率。通过与文献[5]的T-S故障树分析方法、文献[10]的贝叶斯网络方法对比,验证所提方法的可行性。对巷道运输车液压系统进行模糊可靠性评估,计算根节点状态重要度等可靠性指标,为提高系统可靠性和进行故障诊断提供依据。 展开更多
关键词 可靠性评估 贝叶斯网络 t-s故障树 模糊子集 重要度 液压系统
下载PDF
神经网络结构的递归T-S模糊模型 被引量:10
15
作者 李翔 陈增强 袁著祉 《系统工程学报》 CSCD 2001年第4期268-274,共7页
提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建... 提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建模方面 TSFRNN比 TSFNN更加优越 . 展开更多
关键词 递归神经网络 t-s模糊模型 非线性系统 建模 学习算法
下载PDF
基于T-S模糊神经网络的模型在台风灾情预测中的应用——以海南为例 被引量:15
16
作者 张广平 张晨晓 谢忠 《灾害学》 CSCD 北大核心 2013年第2期86-89,共4页
使用1992-2011年间海南省台风灾害数据,综合T-S模糊神经网络的模糊逻辑和神经网络学习优化的性能,设计了一种灾害损失预测模型并定量地表达了台风灾害损失致灾因子与灾情指标因子之间的规律。调节模型的参数cji、σji和pji(k),控制学习... 使用1992-2011年间海南省台风灾害数据,综合T-S模糊神经网络的模糊逻辑和神经网络学习优化的性能,设计了一种灾害损失预测模型并定量地表达了台风灾害损失致灾因子与灾情指标因子之间的规律。调节模型的参数cji、σji和pji(k),控制学习性能指标误差值Ep和总误差E来优化模型的性能。将模型应用于201108号台风"洛坦"灾害损失预测中,实验结果表明该模型具有较好的预测功能。 展开更多
关键词 台风灾害 预测模型 t-s模糊神经网络 海南
下载PDF
基于T-S模糊神经网络模型的榆林市土壤风蚀危险度评价 被引量:14
17
作者 刘新颜 曹晓仪 董治宝 《地理科学》 CSCD 北大核心 2013年第6期741-747,共7页
选择位于风沙过渡区的榆林市为研究区域,以GIS技术和T-S模糊神经网络为依托,从土壤风蚀影响因子及风蚀动力学机制出发构建区域土壤风蚀危险度模型。基于此模型,对榆林市土壤风蚀危险度空间分异特征进行了分析,结果表明:T-S模糊神经网络... 选择位于风沙过渡区的榆林市为研究区域,以GIS技术和T-S模糊神经网络为依托,从土壤风蚀影响因子及风蚀动力学机制出发构建区域土壤风蚀危险度模型。基于此模型,对榆林市土壤风蚀危险度空间分异特征进行了分析,结果表明:T-S模糊神经网络模型可有效地揭示出区域土壤风蚀危险度与环境之间的映射关系,为土壤风蚀预测提供依据;风力、植被、气温、降水、地形等环境要素控制着土壤风蚀危险度空间分异格局;榆林市土壤风蚀危险度空间分异格局表现为:危险度从西北向东南逐渐降低。 展开更多
关键词 榆林市 土壤风蚀 t-s模糊神经网络 危险度评价
下载PDF
改进型T-S模糊神经网络风电功率预测模型的研究 被引量:8
18
作者 张维杰 田建艳 +3 位作者 王芳 张晓明 韩肖清 王鹏 《自动化仪表》 CAS 北大核心 2014年第12期39-42,共4页
为了提高风电功率的预测精度,在分析其主要影响因素的基础上,针对T-S模糊神经网络收敛速度慢、计算量大等缺点,提出了一种改进型T-S模糊神经网络风电功率预测模型。首先采用椭圆基函数作为隶属函数,扩展其接收域;其次利用模糊C-均值聚... 为了提高风电功率的预测精度,在分析其主要影响因素的基础上,针对T-S模糊神经网络收敛速度慢、计算量大等缺点,提出了一种改进型T-S模糊神经网络风电功率预测模型。首先采用椭圆基函数作为隶属函数,扩展其接收域;其次利用模糊C-均值聚类确定其中心值;然后引入惯性项加快网络的收敛速度;最后分别对四季短期风电功率进行预测。仿真结果表明,改进型T-S模糊神经网络有效地提高了短期风电功率的预测精度,具有一定的实用价值。 展开更多
关键词 风电功率预测 改进型t-s模糊神经网络 椭圆基函数 模糊C-均值聚类 惯性项
下载PDF
基于T-S模糊模型的半主动悬架控制研究 被引量:4
19
作者 陈龙 杨谋存 +2 位作者 薛念文 江浩斌 陈杨 《江苏大学学报(自然科学版)》 EI CAS 2004年第5期385-388,共4页
在1/4车辆悬架数学模型的基础上,分别采用T S和Mamdani模糊控制策略,建立模糊模型的半主动悬架控制系统,分析和比较了两种控制系统的性能,设计了基于CIP 51为核心的单片机控制器,并进行了半主动台架试验.计算和试验结果表明,模糊控制器... 在1/4车辆悬架数学模型的基础上,分别采用T S和Mamdani模糊控制策略,建立模糊模型的半主动悬架控制系统,分析和比较了两种控制系统的性能,设计了基于CIP 51为核心的单片机控制器,并进行了半主动台架试验.计算和试验结果表明,模糊控制器均能有效地控制半主动悬架系统,提高车辆的乘坐舒适性,改善车辆的性能.与普通Mamdani模糊控制相比,T S模糊控制器具有设计简单,运算速度快,便于实时控制的优点,验证了T S模糊控制方法的有效性和优越性. 展开更多
关键词 半主动悬架 t-s模糊模型 神经网络控制 台架试验
下载PDF
基于T-S模糊模型的网络控制系统鲁棒H_∞容错控制 被引量:15
20
作者 黄鹤 谢德晓 +1 位作者 张登峰 王执铨 《系统工程与电子技术》 EI CSCD 北大核心 2010年第6期1292-1298,共7页
针对同时存在网络时延和数据包丢失的网络环境,研究了执行器故障下一类非线性网络控制系统的鲁棒H∞容错控制问题。基于不确定T-S模糊模型描述的非线性网络控制系统模型,考虑了更实际、更常见的执行器部分失效情况。通过引入一个积分不... 针对同时存在网络时延和数据包丢失的网络环境,研究了执行器故障下一类非线性网络控制系统的鲁棒H∞容错控制问题。基于不确定T-S模糊模型描述的非线性网络控制系统模型,考虑了更实际、更常见的执行器部分失效情况。通过引入一个积分不等式,获得了此类系统的时滞相关鲁棒稳定性条件,且采用锥补线性化算法给出了此类系统的鲁棒H∞容错控制器设计方法。仿真算例表明,对于任意容许的不确定性以及执行器故障,所设计的控制器能使系统鲁棒渐近稳定,且具有H∞范数界。 展开更多
关键词 非线性网络控制系统 容错控制 H∞控制 t-s模糊模型
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部