F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the...F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.展开更多
Objective: To identify the relationship between T-2 toxin and Kashin-Beck disease (KBD),the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. Methods: Chondroc...Objective: To identify the relationship between T-2 toxin and Kashin-Beck disease (KBD),the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. Methods: Chondrocytes were isolated from human articular cartilage and cultured in vitro. Hyaluronic acid (HA),soluble CD44 (sCD44),IL-1β and TNF-α levels in super-natants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was deter-mined by flow cytometry (FCM). CD44,hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13,3-B-3(-) and 2-B-6 epitopes in the cartilage reconstructed in vitro. Results: T-2 toxin inhibited CD44,HAS-2,and aggrecan mRNA expressions,but promoted aggrecanase-2 mRNA expression. Meanwhile,CD44 expression was found to be the lowest in the chondrocytes cultured with T-2 toxin and the highest in control plus selenium group. In addition,ELISA results indicated that there were higher sCD44,IL-1β and TNF-α levels in T-2 toxin group. Similarly,higher HA levels were also observed in T-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore,using monoclonal antibodies BC-13,3-B-3 and 2-B-6,strong positive immunostaining was found in the reconstructed cartilage cultured with T-2 toxin,whereas no positive staining or very weak staining was observed in the cartilage cultured without T-2 toxin. Selenium could partly inhibit the effects of T-2 toxin above. Conclusion: T-2 toxin could inhibit aggrecan synthesis,promote aggrecanases and pro-inflammatory cytokines production,and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage,inducing aggrecan loss in the end,which may be the initiation of the cartilage degradation.展开更多
Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and o...Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and other apoptosis-related proteins such as Bax,Bcl-2,Bcl-xL,caspase-3 were determined by Western blot analysis and their mRNA expressions were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Results:Increases in Fas,p53 and the pro-apoptotic factor Bax protein and mRNA expressions and a decrease of the anti-apoptotic factor Bcl-xL were observed in a dose-dependent manner after exposures to 1~20 ng/ml T-2 toxin,while the expression of the anti-apoptotic factor Bcl-2 was unchanged.Meanwhile,T-2 toxin could also up-regulate the expressions of both pro-caspase-3 and caspase-3 in a dose-dependent manner.Conclusion:These data suggest a possible underlying molecular mechanism for T-2 toxin to induce the apoptosis sig- naling pathway in human chondrocytes by regulation of apoptosis-related proteins.展开更多
基金supported by the National Natural Science Foundation of China (32273084)the Special Funds for Construction of Innovative Provinces in Hunan Province,China (2020NK2032)+2 种基金the Natural Science Foundation of Hunan Province,China (2020JJ4368)Innovation Foundation for Postgraduate of Hunan Province,China (CX20220670)Innovation Foundation for Postgraduate of Hunan Agricultural University,China (2022XC010)。
文摘F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.
基金Project supported by the National Natural Science Foundation of China (Nos. 30471499 and 30170831)the Ministry of Education of China (No.Key 03152)the Science Foundation of Shaanxi Province of China (No.2004KW-20)
文摘Objective: To identify the relationship between T-2 toxin and Kashin-Beck disease (KBD),the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. Methods: Chondrocytes were isolated from human articular cartilage and cultured in vitro. Hyaluronic acid (HA),soluble CD44 (sCD44),IL-1β and TNF-α levels in super-natants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was deter-mined by flow cytometry (FCM). CD44,hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13,3-B-3(-) and 2-B-6 epitopes in the cartilage reconstructed in vitro. Results: T-2 toxin inhibited CD44,HAS-2,and aggrecan mRNA expressions,but promoted aggrecanase-2 mRNA expression. Meanwhile,CD44 expression was found to be the lowest in the chondrocytes cultured with T-2 toxin and the highest in control plus selenium group. In addition,ELISA results indicated that there were higher sCD44,IL-1β and TNF-α levels in T-2 toxin group. Similarly,higher HA levels were also observed in T-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore,using monoclonal antibodies BC-13,3-B-3 and 2-B-6,strong positive immunostaining was found in the reconstructed cartilage cultured with T-2 toxin,whereas no positive staining or very weak staining was observed in the cartilage cultured without T-2 toxin. Selenium could partly inhibit the effects of T-2 toxin above. Conclusion: T-2 toxin could inhibit aggrecan synthesis,promote aggrecanases and pro-inflammatory cytokines production,and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage,inducing aggrecan loss in the end,which may be the initiation of the cartilage degradation.
基金Project(Nos.3063058 and 30471499)supported by the National Natural Science Foundation of China
文摘Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and other apoptosis-related proteins such as Bax,Bcl-2,Bcl-xL,caspase-3 were determined by Western blot analysis and their mRNA expressions were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Results:Increases in Fas,p53 and the pro-apoptotic factor Bax protein and mRNA expressions and a decrease of the anti-apoptotic factor Bcl-xL were observed in a dose-dependent manner after exposures to 1~20 ng/ml T-2 toxin,while the expression of the anti-apoptotic factor Bcl-2 was unchanged.Meanwhile,T-2 toxin could also up-regulate the expressions of both pro-caspase-3 and caspase-3 in a dose-dependent manner.Conclusion:These data suggest a possible underlying molecular mechanism for T-2 toxin to induce the apoptosis sig- naling pathway in human chondrocytes by regulation of apoptosis-related proteins.