Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg...Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.展开更多
针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模...针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模糊C均值聚类算法进行前件辨识,并利用奇异值分解(singular value decomposition, SVD)算法进行后件辨识,所建立模型的有效性通过拟合度仿真加以验证。随后,在所建立的T-S模糊模型的基础上结合预测控制方法对PLZT驱动器的光致应变位移进行闭环控制,并对该算法进行仿真验证。仿真结果显示,在PLZT驱动器微位移的控制中,该文控制算法减小了基于ON-OFF控制策略下的抖振,且具有更好的控制效果。展开更多
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
文摘Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.
文摘针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模糊C均值聚类算法进行前件辨识,并利用奇异值分解(singular value decomposition, SVD)算法进行后件辨识,所建立模型的有效性通过拟合度仿真加以验证。随后,在所建立的T-S模糊模型的基础上结合预测控制方法对PLZT驱动器的光致应变位移进行闭环控制,并对该算法进行仿真验证。仿真结果显示,在PLZT驱动器微位移的控制中,该文控制算法减小了基于ON-OFF控制策略下的抖振,且具有更好的控制效果。
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.