Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are invest...Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.展开更多
Background:Buyang Huanwu decoction(BHD)is a traditional Chinese medicine herbal formula used for treating hypertension,particularly in the later stages of hypertension when it is associated with intracerebral hemorrha...Background:Buyang Huanwu decoction(BHD)is a traditional Chinese medicine herbal formula used for treating hypertension,particularly in the later stages of hypertension when it is associated with intracerebral hemorrhage.This study aims to investigate the treatment mechanism of BHD to provide a basis for its clinical application in hypertension treatment.Methods:Network pharmacology analysis and cell culture experiments were performed to explore the potential proteins and mechanisms of action of BHD against hypertension.Bioactive compounds related to BHD were screened,and relevant targets associated with hypertension and BHD were retrieved.Molecular docking technology was used to identify the effective signaling pathway based on the Kyoto Encyclopedia of Genes and Genomes and protein-protein interaction network cores.Lastly,the effects and mechanisms of BHD on salt-sensitive hypertensive endothelial cells were investigated.Results:Ninety-three potential therapeutic targets for BHD and salt-sensitive hypertension were found to be closely associated with the PI3K/Akt/eNOS signaling pathway and oxidative stress.Cell experiments further indicated the pivotal role of endothelial cells in hypertension,and validation analysis showed that BHD significantly preserved cell morphology,suppressed oxidative stress reactions,activated the PI3K/Akt/eNOS signaling pathways,preserved normal endothelial cell function,and reduced cell apoptosis.Conclusion:BHD effectively activates the PI3K/Akt/VEGF signaling pathway,attenuates oxidative stress-induced injury in endothelial cells exposed to high salt levels,and mitigates apoptosis,supporting the use of traditional Chinese medicine BHD in the treatment of salt-sensitive hypertension.展开更多
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ...In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.展开更多
A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum...A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay.展开更多
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a nov...Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively.展开更多
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita...The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.展开更多
Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) net...Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.展开更多
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err...Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness.展开更多
For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service...For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674107,61475049,11775083,61774062,and 61771205).
文摘Two types of one-dimensional(1D)anti-PT-symmetric periodic ring optical waveguide networks,consisting of gain and loss materials,are constructed.The singular optical propagation properties of these networks are investigated.The results show that the system composed of gain materials exhibits characteristics of ultra-strong transmission and bidirectional reflection.Conversely,the system composed of loss materials demonstrates equal transmittance and reflectance at some frequencies.In both the systems,a new type of total reflection phenomenon is observed.When the imaginary part of the refractive indices of waveguide segments is smaller than 10-5,the system shows bidirectional transparency with the transmittance tending to be 1 and reflectivity to be smaller than 10-8 at some bands.When the refractive indices of the waveguide segments are real,the system will be bidirectional transparent at the full band.These findings may deepen the understanding of anti-PT-symmetric optical systems and optical waveguide networks,and possess potential applications in efficient optical energy storage,ultra-sensitive optical filters,ultra-sensitive all-optical switches,integrated optical chips,stealth physics,and so on.
基金the Liaoning Provincial Science and Technology Plan Project(2023-MSLH-178)the Project Fund of Liaoning Provincial Department of Education(LJKMZ20221315,L202025)+1 种基金the Special Fund of Liaoning Provincial Department of Science and Technology for Central Guidance of Local Science and Technology Development(2018416016)the Project Fund of Liaoning Provincial Department of Human Resources and Social Security"Millions of Talents Program"(2020921097).
文摘Background:Buyang Huanwu decoction(BHD)is a traditional Chinese medicine herbal formula used for treating hypertension,particularly in the later stages of hypertension when it is associated with intracerebral hemorrhage.This study aims to investigate the treatment mechanism of BHD to provide a basis for its clinical application in hypertension treatment.Methods:Network pharmacology analysis and cell culture experiments were performed to explore the potential proteins and mechanisms of action of BHD against hypertension.Bioactive compounds related to BHD were screened,and relevant targets associated with hypertension and BHD were retrieved.Molecular docking technology was used to identify the effective signaling pathway based on the Kyoto Encyclopedia of Genes and Genomes and protein-protein interaction network cores.Lastly,the effects and mechanisms of BHD on salt-sensitive hypertensive endothelial cells were investigated.Results:Ninety-three potential therapeutic targets for BHD and salt-sensitive hypertension were found to be closely associated with the PI3K/Akt/eNOS signaling pathway and oxidative stress.Cell experiments further indicated the pivotal role of endothelial cells in hypertension,and validation analysis showed that BHD significantly preserved cell morphology,suppressed oxidative stress reactions,activated the PI3K/Akt/eNOS signaling pathways,preserved normal endothelial cell function,and reduced cell apoptosis.Conclusion:BHD effectively activates the PI3K/Akt/VEGF signaling pathway,attenuates oxidative stress-induced injury in endothelial cells exposed to high salt levels,and mitigates apoptosis,supporting the use of traditional Chinese medicine BHD in the treatment of salt-sensitive hypertension.
基金The National Natural Science Foundation of China(No.60474049,60835001)Specialized Research Fund for Doctoral Program of Higher Education(No.20090092120027)
文摘In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.
基金The National High Technology Research and Development Program of China(863 Program)(No.2013AA013601)Prospective Research Project on Future Netw orks of Jiangsu Future Netw orks Innovation Institute(No.BY2013095-1-18)
文摘A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay.
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.
基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,China
文摘Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively.
基金Project(E2015203354)supported by Natural Science Foundation of Steel United Research Fund of Hebei Province,ChinaProject(ZD2016100)supported by the Science and the Technology Research Key Project of High School of Hebei Province,China+1 种基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,ChinaProject(16LGY015)supported by the Basic Research Special Breeding of Yanshan University,China
文摘The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.
基金supported in part by the National Key Research and Development Program of China (Grant No.2020YFA0711301)in part by the National Natural Science Foundation of China (Grant No.62341110 and U22A2002)in part by the Suzhou Science and Technology Project。
文摘Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.
基金Supported by National Natural Science Foundation of P.R.China(50474020,60534010,60504006)
文摘Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness.
基金supported by Research and Application of Edge IoT Technology for Distributed New Energy Consumption in Distribution Areas,Project Number(5108-202218280A-2-394-XG)。
文摘For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.