In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar ...In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b...Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.展开更多
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re...Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.展开更多
A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disea...A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disease(STRIDE)-II guidelines specify short,intermediate,and long-term treatment goals,documenting specific treatment targets to be achieved at each of these timepoints.Scheduled appraisal of Crohn’s disease activity against pre-defined treatment targets at these timepoints remains central to determining whether current therapy should be continued or modified.Consensus treatment targets in Crohn’s disease comprise combination clinical and patient-reported outcome remission,in conjunction with biomarker normalisation and endoscopic healing.Although the STRIDE-II guidelines endorse the pursuit of endoscopic healing,clinicians must consider that this may not always be appropriate,acceptable,or achievable in all patients.This underscores the need to engage patients at the outset in an effort to personalise care and individualise treatment targets.The use of non-invasive biomarkers such as faecal calprotectin in conjunction with cross-sectional imaging techniques,particularly intestinal ultrasound,holds great promise;as do emerging treatment targets such as transmural healing.Two randomised clinical trials,namely,CALM and STARDUST,have evaluated the efficacy of a T2T approach in achieving endoscopic endpoints in patients with Crohn’s disease.Findings from these studies reflect that patient subgroups and Crohn’s disease characteristics likely to benefit most from a T2T approach,remain to be clarified.Moreover,outside of clinical trials,data pertaining to the real-world effectiveness of a T2T approach remains scare,highlighting the need for pragmatic real-world studies.Despite the obvious promise of a T2T approach,a lack of guidance to support its integration into real-world clinical practice has the potential to limit its uptake.This highlights the need to describe strategies,processes,and models of care capable of supporting the integration and execution of a T2T approach in real-world clinical practice.Hence,this review seeks to examine the current and emerging literature to provide clinicians with practical guidance on how to incorporate the principles of T2T into routine clinical practice for the management of Crohn’s disease.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with ...Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.展开更多
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc...To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.展开更多
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne...Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms.展开更多
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a hig...The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.展开更多
Andrographolide (AG) is the characteristic constituent of Andrographis paniculata, of the Acanthaceae family. This plant is a well-known Asian medicinal plant that is widely used in India, China, and Thailand. A monog...Andrographolide (AG) is the characteristic constituent of Andrographis paniculata, of the Acanthaceae family. This plant is a well-known Asian medicinal plant that is widely used in India, China, and Thailand. A monograph of Herba Andrographidis (Chuanxinlian) is included in the Chinese Pharmacopoeia, which reports that this decoction can “remove heat, counteract toxicity, and reduce swellings.” The numerous potential activities of AG range from anti-inflammatory to anti-diabetic action, from neuroprotection to antitumor activity, and from hepatoprotective to anti-obesity properties. However, AG has low bioavailability and poor water solubility, which can limit its distribution and accumulation in the body after administration. In addition, AG is not stable in gastrointestinal alkaline and acidic environments, and has been reported to have a very short half-life. Among the diverse strategies that have been adopted to increase AG water solubility and permeability, the technological approach is the most useful way to develop appropriate delivery systems. This review reports on published studies related to microparticles (MPs) and nanoparticles (NPs) loaded with AG. MPs based on polylactic-glycolic acid (PLGA), alginic acid, and glucan derivatives have been developed for parenteral oral and pulmonary administration, respectively. NPs include vesicles (both liposomes and niosomes);polymeric NPs (based on polyvinyl alcohol, polymerized phenylboronic acid, PLGA, human serum albumin, poly ethylcyanoacrylate, and polymeric micelles);solid lipid NPs;microemulsions and nanoemulsions;gold NPs;nanocrystals;and nanosuspensions. Improved bioavailability, target-tissue distribution, and efficacy of AG loaded in the described drug delivery systems have been reported.展开更多
基金supported by the National Natural Science Foundation of China(62201251)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB510024)the Open Fund for the Hangzhou Institute of Technology Academician Workstation at Xidian University(XH-KY-202306-0291)。
文摘In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82171363,82371381(to PL),82171458(to XJ)Key Research and Development Project of Shaa nxi Province,Nos.2024SF-YBXM-404(to KY)。
文摘Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High-Level Talent Training Project(2022)(to HS)The Jiangsu Maternal and Child Health Research Key Project,No.F202013(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)The Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
文摘A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disease(STRIDE)-II guidelines specify short,intermediate,and long-term treatment goals,documenting specific treatment targets to be achieved at each of these timepoints.Scheduled appraisal of Crohn’s disease activity against pre-defined treatment targets at these timepoints remains central to determining whether current therapy should be continued or modified.Consensus treatment targets in Crohn’s disease comprise combination clinical and patient-reported outcome remission,in conjunction with biomarker normalisation and endoscopic healing.Although the STRIDE-II guidelines endorse the pursuit of endoscopic healing,clinicians must consider that this may not always be appropriate,acceptable,or achievable in all patients.This underscores the need to engage patients at the outset in an effort to personalise care and individualise treatment targets.The use of non-invasive biomarkers such as faecal calprotectin in conjunction with cross-sectional imaging techniques,particularly intestinal ultrasound,holds great promise;as do emerging treatment targets such as transmural healing.Two randomised clinical trials,namely,CALM and STARDUST,have evaluated the efficacy of a T2T approach in achieving endoscopic endpoints in patients with Crohn’s disease.Findings from these studies reflect that patient subgroups and Crohn’s disease characteristics likely to benefit most from a T2T approach,remain to be clarified.Moreover,outside of clinical trials,data pertaining to the real-world effectiveness of a T2T approach remains scare,highlighting the need for pragmatic real-world studies.Despite the obvious promise of a T2T approach,a lack of guidance to support its integration into real-world clinical practice has the potential to limit its uptake.This highlights the need to describe strategies,processes,and models of care capable of supporting the integration and execution of a T2T approach in real-world clinical practice.Hence,this review seeks to examine the current and emerging literature to provide clinicians with practical guidance on how to incorporate the principles of T2T into routine clinical practice for the management of Crohn’s disease.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
基金Supported by Xi'an Jiaotong University Medical"Basic-Clinical"Integration Innovation Project,No.YXJLRH2022067Shaanxi Postdoctoral Research Program“Orlistat-loaded Nanoparticles as A Targeted Therapeutical Strategy for The Enhanced Treatment of Liver Cancer”,No.2023BSHYDZZ09.
文摘Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.
基金funded by the General Project of Key Research and Develop-ment Plan of Shaanxi Province(No.2022NY-087).
文摘To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金supported by National Natural Science Foundation of China(Grant No.61871209,No.62272182 and No.61901210)Shenzhen Science and Technology Program under Grant JCYJ20220530161004009+2 种基金Natural Science Foundation of Hubei Province(Grant No.2022CF011)Wuhan Business University Doctoral Fundamental Research Funds(Grant No.2021KB005)in part by Artificial Intelligence and Intelligent Transportation Joint Technical Center of HUST and Hubei Chutian Intelligent Transportation Co.,LTD under project Intelligent Tunnel Integrated Monitoring and Management System.
文摘Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms.
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.
基金supported by the National MCF Energy R&D Program(No.2018YFE0312300)the National Key Research and Development Program of China(No.2017YFA0402500)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.Y45ETY2302)。
文摘The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.
基金the Fondazione Cassa Risparmio di Firenze for kindly supporting this review study
文摘Andrographolide (AG) is the characteristic constituent of Andrographis paniculata, of the Acanthaceae family. This plant is a well-known Asian medicinal plant that is widely used in India, China, and Thailand. A monograph of Herba Andrographidis (Chuanxinlian) is included in the Chinese Pharmacopoeia, which reports that this decoction can “remove heat, counteract toxicity, and reduce swellings.” The numerous potential activities of AG range from anti-inflammatory to anti-diabetic action, from neuroprotection to antitumor activity, and from hepatoprotective to anti-obesity properties. However, AG has low bioavailability and poor water solubility, which can limit its distribution and accumulation in the body after administration. In addition, AG is not stable in gastrointestinal alkaline and acidic environments, and has been reported to have a very short half-life. Among the diverse strategies that have been adopted to increase AG water solubility and permeability, the technological approach is the most useful way to develop appropriate delivery systems. This review reports on published studies related to microparticles (MPs) and nanoparticles (NPs) loaded with AG. MPs based on polylactic-glycolic acid (PLGA), alginic acid, and glucan derivatives have been developed for parenteral oral and pulmonary administration, respectively. NPs include vesicles (both liposomes and niosomes);polymeric NPs (based on polyvinyl alcohol, polymerized phenylboronic acid, PLGA, human serum albumin, poly ethylcyanoacrylate, and polymeric micelles);solid lipid NPs;microemulsions and nanoemulsions;gold NPs;nanocrystals;and nanosuspensions. Improved bioavailability, target-tissue distribution, and efficacy of AG loaded in the described drug delivery systems have been reported.