Fe3O4/T-ZnOw composites are fabricated by depositing a layer of Fe3O4 film on the surface of tetrapod-shaped ZnO whisker (T-ZnOw) by ferrite plating method. The morphology, structure and magnetic properties of the c...Fe3O4/T-ZnOw composites are fabricated by depositing a layer of Fe3O4 film on the surface of tetrapod-shaped ZnO whisker (T-ZnOw) by ferrite plating method. The morphology, structure and magnetic properties of the composites are characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and vibrating-sample magnetometer (VSM), respectively. The effects of temperature and pH value of fertile plating on the Fe3O4/T-ZnOw composites and the magnetic properties of composites are studied. It is shown that the chemical enviromnent with pH value at 7.5 is most favorable for the ferrite plating processes by analyzing the main peaks intensity of Fe3O4 in the XRD patterns and the average diameters of the Fe3O4 crystalline. The increase of the ferrite plating temperature with pH value around 7.5 benefits the whole encapsulation of T-ZnOw by the Fe3O4 magnetic films. The composites exhibit ferromagnetic properties and show much lower magnetization intensity than bulk samples at the same magnetic field intensity.展开更多
基金National Natural Science Foundation of China(51001007)Fundamental Research Funds for the Central Universities
文摘Fe3O4/T-ZnOw composites are fabricated by depositing a layer of Fe3O4 film on the surface of tetrapod-shaped ZnO whisker (T-ZnOw) by ferrite plating method. The morphology, structure and magnetic properties of the composites are characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and vibrating-sample magnetometer (VSM), respectively. The effects of temperature and pH value of fertile plating on the Fe3O4/T-ZnOw composites and the magnetic properties of composites are studied. It is shown that the chemical enviromnent with pH value at 7.5 is most favorable for the ferrite plating processes by analyzing the main peaks intensity of Fe3O4 in the XRD patterns and the average diameters of the Fe3O4 crystalline. The increase of the ferrite plating temperature with pH value around 7.5 benefits the whole encapsulation of T-ZnOw by the Fe3O4 magnetic films. The composites exhibit ferromagnetic properties and show much lower magnetization intensity than bulk samples at the same magnetic field intensity.