期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction
1
作者 Lihui Ma Zhuo Han +6 位作者 Wei Li Guangfeng Qi Ran Cheng Yuanyuan Wang Xiangran Mi Xiaohan Zhang Yunfei Li 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1381-1392,共12页
When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located do... When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon. 展开更多
关键词 Two-phase flow t-junction split model entrance effect mechanism model improved model
下载PDF
微通道内气液两相Taylor流数值模拟
2
作者 冯斐斐 王晓丹 +1 位作者 管星星 夏良苗 《山西化工》 CAS 2024年第1期132-134,共3页
本文采用FLUENT软件对T型微通道内气液两相Taylor流进行模拟,得到了各物理参数对Taylor流的影响规律。在此基础上,采用最小二乘法进行拟合,得到了可以更准确预测T型通道内气液两相Taylor流气泡和液柱长度的经验关联式。
关键词 T型微通道 Taylor流 气液两相 最小二乘法
下载PDF
Modified Pressure Loss Model for T-junctions of Engine Exhaust Manifold 被引量:4
3
作者 WANG Wenhui LU Xiaolu +1 位作者 CUI Yi DENG Kangyao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1232-1239,共8页
The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have fo... The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models. 展开更多
关键词 t-junction diesel engine pressure loss model total pressure loss coefficient
下载PDF
Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor 被引量:4
4
作者 Bozhao Chu Nian Zhang +2 位作者 Xuli Zhai Xin Chen Yi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期593-600,共8页
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti... Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction. 展开更多
关键词 hydrogen production steam methane reforming (SMR) nickel-based catalysts MgO promoter millisecond reaction micro-channel reactor
下载PDF
Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device 被引量:1
5
作者 吴梁玉 刘凌波 +2 位作者 韩笑天 李倩文 杨卫波 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期417-427,共11页
Based on the volume of fluid(VOF) method, a numerical model of bubbles splitting in a microfluidic device with T-junction is developed and solved numerically. Various flow patterns are distinguished and the effects of... Based on the volume of fluid(VOF) method, a numerical model of bubbles splitting in a microfluidic device with T-junction is developed and solved numerically. Various flow patterns are distinguished and the effects of bubble length,capillary number, and diameter ratio between the mother channel and branch are discussed. The break-up mechanism is explored in particular. The results indicate that the behaviors of the bubbles can be classified into two categories: break-up and non-break. Under the condition of slug flowing, the branches are obstructed by the bubbles that the pressure difference drives the bubbles into break-up state, while the bubbles that retain non-break state flow into an arbitrary branch under bubbling flow condition. The break-up of the short bubbles only occurs when the viscous force from the continuous phase overcomes the interfacial tension. The behavior of the bubbles transits from non-break to break-up with the increase of capillary number. In addition, the increasing of the diameter ratio is beneficial to the symmetrical break-up of the bubbles. 展开更多
关键词 microfluidic t-junction BUBBLE BREAK-UP NUMERICAL simulation
下载PDF
NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS 被引量:1
6
作者 XuJie GuChuangang WangTong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第4期575-578,共4页
The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure dro... The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure drop along the duct as well .as the velocity profile in themicro-channels is obtained. The numerical results agreed well with the experimental results in thereferences. Moreover, the effects of Kn, sigma_v and Re on the velocity profiles are analyzed. It isfound that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundaryincreases; the tangential momentum coefficient sigma_v affects the slip velocity greatly. The slipvelocity increases with decreasing a, In the slip flow regime and for low Re numbers, the slipvelocity is little influenced by the Re number. 展开更多
关键词 micro-channel Numerical analysis KN SLIP
下载PDF
Effects on the mixing process of a coiled tube after a T-junction:Simulation and correlation 被引量:1
7
作者 Shan Zhu Kai Wang Yangcheng Lü 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第12期2441-2447,共7页
Simulations were performed to examine the effects of a coiled tube after a T-junction on the mixing and flow characteristics. A coiled tube was found to have two effects: inducing a radial flow and flattening the axia... Simulations were performed to examine the effects of a coiled tube after a T-junction on the mixing and flow characteristics. A coiled tube was found to have two effects: inducing a radial flow and flattening the axial velocity distribution, which enhances and weakens the mixing, respectively. In the straight tube section connecting the Tjunction and coiled tube, the latter may dominate and cause the mixing to deteriorate. An experiment was performed with the Villermaux/Dushman method to verify the simulation results. Based on a mixing performance simulation with various fluid and geometric structure parameters, a dimensionless correlation was obtained that can be used to determine the mixing intensity along the coiled tube with a deviation of less than 1.5%.These results provide guidance for designing a coiled tube or optimizing the operating conditions to meet the mixing requirements of specific chemical processes. 展开更多
关键词 MIXING t-junction SIMULATION Coiled TUBE CORRELATION FLOW
下载PDF
Large eddy simulation of hot and cold fluids mixing in a T-junction for predicting thermal fluctuations 被引量:1
8
作者 朱维宇 卢涛 +2 位作者 姜培学 郭志军 王奎升 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第11期1379-1392,共14页
Temperature fluctuations in a mixing T-junction have been simulated on the FLUENT platform using the large eddy simulation (LES) turbulent flow model and a sub-grid scale Smagorinsky-Lilly model. The normalized mean... Temperature fluctuations in a mixing T-junction have been simulated on the FLUENT platform using the large eddy simulation (LES) turbulent flow model and a sub-grid scale Smagorinsky-Lilly model. The normalized mean and root mean square temperatures for describing time-averaged temperature and temperature fluctuation intensity, and the velocity are obtained. The power spectrum densities of temperature fluctuations, which are key parameters for thermal fatigue analysis and lifetime evaluation, are analyzed. Simulation results are consistent with experimental data published in the literature, showing that the LES is reliable. Several mixing processes under different conditions are simulated in order to analyze the effects of varying Reynolds number and Richardson number on the mixing course and thermal fluctuations. 展开更多
关键词 numerical simulation thermal fluctuation t-junction MIXING
下载PDF
RESEARCH ON DIFFUSION IN MICRO-CHANNEL FLOW DRIVEN BY ELECTROOSMOSIS 被引量:1
9
作者 张凯 林建忠 李志华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期575-582,共8页
Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strengt... Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strength applied externally and the concentration of buffer solution play a significant role in the diffusion of sample, however, hydraulic diameter and aspect ratio of height to width of channel play a small role in it. Weakening the electrical field strength applied externally and the concentration of buffer solution properly can prevent the sample band from broadening effectively, and promote the efficiency of testing and separation as well as keep a faster speed of transport. The conclusions are helpful to the optimal design for micro-channel. 展开更多
关键词 micro-channel DIFFUSION driven by electroosmosis numerical simulation
下载PDF
Universality of Periodic Oscillation Induced in Side Branch of a T-Junction in Numerical Simulation 被引量:1
10
作者 Ryuhei Yamaguchi Gaku Tanaka +3 位作者 Tadashi Nakagawa Atsushi Shirai Hao Liu Toshiyuki Hayase 《Journal of Flow Control, Measurement & Visualization》 2017年第4期73-85,共13页
The flow instability through the side branch of a T-junction is analyzed in a numerical simulation. In a previous experimental study, the authors clarified the mechanism of fluid-induced vibration in the side branch o... The flow instability through the side branch of a T-junction is analyzed in a numerical simulation. In a previous experimental study, the authors clarified the mechanism of fluid-induced vibration in the side branch of the T-junction in laminar steady flow through the trunk. However, in that approach there were restrictions with respect to extracting details of flow behavior such as the flow instability and the distribution of wall shear stress along the wall. Here the spatial growth of the velocity perturbation at the upstream boundary of the side branch is investigated. The simulation result indicates that a periodic velocity fluctuation introduced at the upstream boundary is amplified downstream, in good agreement with experimental result. The fluctuation in wall shear stress because of the flow instability shows local extrema in both the near and distal walls. From the numerical simulation, the downstream fluid oscillation under a typical condition has a Strouhal number of 1.05, which approximately agrees with the value obtained in experiments. Therefore, this periodic oscillation motion is a universal phenomenon in the side branch of a T-junction. 展开更多
关键词 Flow INSTABILITY Fluid-Induced OSCILLATION NUMERICAL Simulation SIMPLER Method t-junction
下载PDF
Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
11
作者 郭广明 罗琴 +1 位作者 朱林 边义祥 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期270-283,共14页
Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary... Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel. 展开更多
关键词 rarefied FLOW micro-channel mass FLOW VELOCITY temperature distribution
下载PDF
Flowing simulation of injection molded parts with micro-channel
12
作者 崔志香 司军辉 +1 位作者 刘春太 申长雨 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第3期269-276,共8页
In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included i... In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel. 展开更多
关键词 micro-injection molding flowing simulation micro-channel
下载PDF
Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice
13
作者 Li Ma Yongjin Cui +3 位作者 Lin Sheng Chencan Du Jian Deng Guangsheng Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期210-218,共9页
Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,becau... Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,because dripping flow in normal microdevices can’t be easily realized for the systems.In this work,we designed a capillary embedded step T-junction microdevice to develop a modified microfluidic approach to determine the interfacial tension of several systems,specially,for the systems with low interfacial tension and high viscosity.This method combines a classical T-junction geometry with a step to strengthen the shear force further to form monodispersed water/oil(w/o)or aqueous two-phase(ATP)droplet under dripping flow.For systems with low interfacial tension and high viscosity,the operating range for dripping flow is relative narrow whereas a wider dripping flow operating range can be realized in this step Tjunction microdevice when the capillary number of the continuous phase is in the range of 0.01 to 0.7.Additionally,the viscosity of the continuous phase was also measured in the same microdevice.Several different systems with an interfacial tension from 1.0 to 8.0 m N·m^(-1) and a viscosity from 0.9 to 10 m Pa·s were measured accurately.The experimental results are in good agreement with the data obtained from a commercial interfacial tensiometer and a spinning digital viscometer.This work could extend the application of microfluidic flows. 展开更多
关键词 Step t-junction Interfacial tension VISCOSITY Force balance
下载PDF
Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects by means of Buongiorno’s model
14
作者 M.D.K.NIAZI Hang XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期83-104,共22页
A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Differe... A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors. 展开更多
关键词 electrical double layer(EDL) entropy generation micro-channel NANOFLUID
下载PDF
Design and fluid-structure interaction analysis for a microfluidic T-junction with chemo-responsive hydrogel valves
15
作者 E.KHANJANI A.HAJARIAN +3 位作者 A.KARGAR-ESTAHBANATY N.ARBABI A.TAHERI M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第6期939-952,共14页
Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study th... Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels. 展开更多
关键词 HYDROGEL PH-SENSITIVE t-junction flow sorter fluid-structure interaction(FSI) micro-valve
下载PDF
Fluid Vibration Induced in T-Junction with Double Side Branches 被引量:1
16
作者 Ryuhei Yamaguchi Gaku Tanaka +1 位作者 Hao Liu Toshiyuki Hayase 《World Journal of Mechanics》 2016年第4期169-179,共11页
A T-junction is a fundamental fluid element prevalent in pipe networks of water supplies and power plants. In the present study, a double T-junction was investigated for flow instability and fluid vibration. Both axi-... A T-junction is a fundamental fluid element prevalent in pipe networks of water supplies and power plants. In the present study, a double T-junction was investigated for flow instability and fluid vibration. Both axi-aligned and skewed double T-junctions are examined from viewpoint of flow instability. With single-phase flow in an open-ended double T-junction, fluid vibration is induced in both side branches because of a high shear rate with a point of inflection. The frequency of vibration in the downstream branch is higher than that in the upstream branch. Except for the upstream branch in the skewed double T-junction, the frequency is higher than that in a single T-junction. The fluid vibrations are closely associated with the fluid interference created by the presence of the two side branches. 展开更多
关键词 Fluid Vibration Flow Instability Shear Rate Double t-junction Particle Image Velocimetry Laser Doppler Anemometry
下载PDF
Modeling and Simulation of a Hybrid Jet-Impingement/Micro-Channel Heat Sink
17
作者 Taidong Xu Hao Liu +2 位作者 Dejun Zhang Yadong Li Xiaoming Zhou 《Fluid Dynamics & Materials Processing》 EI 2021年第1期109-121,共13页
With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard method... With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard methods based on the combination of the so-called“jet impingement”and“micro-channel”approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields.In this paper,a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model.Dedicated CFD simulation of the coupled flow/temperature fields and orthogonal tests are performed in order to optimize the overall design.The influence of different sets of structural parameters on the cooling performance is examined.It is shown that an optimal scheme exists for which favourable performance can be obtained in terms of hot spot temperature decrease and thermal uniformity improvement. 展开更多
关键词 Jet impingement micro-channel heat sink numerical simulation orthogonal test
下载PDF
Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink
18
作者 Jianhua Xiang Liangming Deng +3 位作者 Chao Zhou Hongliang Zhao Jiale Huang Sulian Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期189-200,共12页
With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is pro... With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved. 展开更多
关键词 micro-channel Phase change heat sink Heat transfer performance testing Finite element simulation Orthogonal test
下载PDF
Patterning proteins on surfaces by micro-channels
19
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第4期185-186,共2页
关键词 BSA Patterning proteins on surfaces by micro-channels
下载PDF
Effect of Velocity Ratio,Viscosity Ratio,Contact Angle,and Channel Size Ratio on Droplet Formation
20
作者 Mohammed Bourega Ibrahim Kromba +1 位作者 Khadidja Feah Arbi Sofiane Souimane 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2471-2480,共10页
This study uses a T-junction to examine the effects of different parameters(velocity ratio,viscosity,contact angle,and channel size ratio)on the generation of microdroplets,related rate,and size.More specifically,numer... This study uses a T-junction to examine the effects of different parameters(velocity ratio,viscosity,contact angle,and channel size ratio)on the generation of microdroplets,related rate,and size.More specifically,numerical simulations are exploited to investigate situations with a velocity varying from 0.004 to 1.6 m/s for the continuous phase and from 0.004 to 0.8 m/s for the dispersed phase,viscosity ratios(0.668,1,6.689,10,66.899),contact angle 80°<θ<270°and four different canal size ratios(1,1.5,2 and 4).The results show that canal size influences droplet size and the generation rate.The contact angle has an impact on the form and the quality of generated droplets.Moreover,the relationship between velocity and viscosity ratios,droplet size,and generation rate is non-monotonic. 展开更多
关键词 Microfluidics t-junction droplet generator droplet size droplet diameter generation rate
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部