A compact and reconfigurable low noise amplifier(LNA)is proposed by combining an input transistor,composite transistors with Darlington configuration as the amplification and output transistor,T-type structure composi...A compact and reconfigurable low noise amplifier(LNA)is proposed by combining an input transistor,composite transistors with Darlington configuration as the amplification and output transistor,T-type structure composite resistors instead of a simplex structure resistor,a shunt inductor feedback realized by a tunable active inductor(AI),a shunt inductor peaking technique realized by another tunable AI.The division and collaboration among different resistances in the T-type structure composite resistor realize simultaneously input impedance matching,output impedance matching and good noise performance;the shunt feedback and peaking technique using two tunable AIs not only extend frequency bandwidth and improve gain flatness,but also make the gain and frequency band can be tuned simultaneously by the external bias of tunable AIs;the Darlington configuration of composite transistors provides high gain;furthermore,the adoption of the small size AIs instead of large size passive spiral inductor,and the use of composite resistors make the LNA have a small size.The LNA is fabricated and verified by GaAs/InGaP hetero-junction bipolar transistor(HBT)process.The results show that at the frequency of 7 GHz,the gain S_(21)is maximum and up to 19 dB;the S_(21)can be tuned from 17 dB to 19 dB by tuning external bias of tunable AIs,that is,the tunable amount of S_(21)is 2 dB,and similarly at 8 GHz;the tunable range of 3 dB bandwidth is 1 GHz.In addition,the gain S_(21)flatness is better than 0.4 dB under frequency from 3.1 GHz to 10.6 GHz;the size of the LNA only has 760μm×1260μm(including PADs).Therefore,the proposed strategies in the paper provide a new solution to the design of small size and reconfigurable ultra-wideband(UWB)LNA and can be used further to adjust the variations of gain and bandwidth of radio frequency integrated circuits(RFICs)due to package,parasitic and the variation of fabrication process and temperature.展开更多
Drought is usually supposed to be a rainfall deficiency problem. Most studies and practices to mitigate drought disaster are focusing on water development and irrigation, while neglecting that the agriculture system i...Drought is usually supposed to be a rainfall deficiency problem. Most studies and practices to mitigate drought disaster are focusing on water development and irrigation, while neglecting that the agriculture system is a compounded human-natural system. Drought situation and tendency is also driven by human coping strategies. This paper takes Hebei Province in north China as an example, studing the spirally interact process of drought resisting and hydrological ecological feedback. The result shows that large scale water projects construction facilitated irrigation. With improved irrigation, farmers enhanced multiple crop index and land-use intensity greatly and increased the sowing area of water consuming crop, winter wheat. At the same time, both crop yield and gross output are raising steadily. Water demand and depletion in agricultural system increase year by year. This gradually leads to highly dependent on over exploitation of water resources, especially overdraw of groundwater. The process deteriorated the stability of hydrological-ecological system and made the ecological environment drying up. Drying up environment is breeding greater vulnerability and risk of drought in the long term. For sustainable development, integrated drought risk management should be based on the balance between sustainable water supply and water demand. The key is to improve agricultural system's adaptive and resilient capacity to drought.展开更多
基金Supported by the National Natural Science Foundation of China(No.61774012,61574010)。
文摘A compact and reconfigurable low noise amplifier(LNA)is proposed by combining an input transistor,composite transistors with Darlington configuration as the amplification and output transistor,T-type structure composite resistors instead of a simplex structure resistor,a shunt inductor feedback realized by a tunable active inductor(AI),a shunt inductor peaking technique realized by another tunable AI.The division and collaboration among different resistances in the T-type structure composite resistor realize simultaneously input impedance matching,output impedance matching and good noise performance;the shunt feedback and peaking technique using two tunable AIs not only extend frequency bandwidth and improve gain flatness,but also make the gain and frequency band can be tuned simultaneously by the external bias of tunable AIs;the Darlington configuration of composite transistors provides high gain;furthermore,the adoption of the small size AIs instead of large size passive spiral inductor,and the use of composite resistors make the LNA have a small size.The LNA is fabricated and verified by GaAs/InGaP hetero-junction bipolar transistor(HBT)process.The results show that at the frequency of 7 GHz,the gain S_(21)is maximum and up to 19 dB;the S_(21)can be tuned from 17 dB to 19 dB by tuning external bias of tunable AIs,that is,the tunable amount of S_(21)is 2 dB,and similarly at 8 GHz;the tunable range of 3 dB bandwidth is 1 GHz.In addition,the gain S_(21)flatness is better than 0.4 dB under frequency from 3.1 GHz to 10.6 GHz;the size of the LNA only has 760μm×1260μm(including PADs).Therefore,the proposed strategies in the paper provide a new solution to the design of small size and reconfigurable ultra-wideband(UWB)LNA and can be used further to adjust the variations of gain and bandwidth of radio frequency integrated circuits(RFICs)due to package,parasitic and the variation of fabrication process and temperature.
基金Acknowledgments China National Natural Science Foundation (No. 41171402) and Doctoral Fund of Hebei Normal University (No. 103237).
文摘Drought is usually supposed to be a rainfall deficiency problem. Most studies and practices to mitigate drought disaster are focusing on water development and irrigation, while neglecting that the agriculture system is a compounded human-natural system. Drought situation and tendency is also driven by human coping strategies. This paper takes Hebei Province in north China as an example, studing the spirally interact process of drought resisting and hydrological ecological feedback. The result shows that large scale water projects construction facilitated irrigation. With improved irrigation, farmers enhanced multiple crop index and land-use intensity greatly and increased the sowing area of water consuming crop, winter wheat. At the same time, both crop yield and gross output are raising steadily. Water demand and depletion in agricultural system increase year by year. This gradually leads to highly dependent on over exploitation of water resources, especially overdraw of groundwater. The process deteriorated the stability of hydrological-ecological system and made the ecological environment drying up. Drying up environment is breeding greater vulnerability and risk of drought in the long term. For sustainable development, integrated drought risk management should be based on the balance between sustainable water supply and water demand. The key is to improve agricultural system's adaptive and resilient capacity to drought.