Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease(AECOPD)is often combined with respiratory failure,which increases the patient's morbidity and mortality.Diaphragm ultrasound(DUS)has developed...BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease(AECOPD)is often combined with respiratory failure,which increases the patient's morbidity and mortality.Diaphragm ultrasound(DUS)has developed rapidly in the field of critical care in recent years.Studies with DUS monitoring diaphragm-related rapid shallow breathing index have demonstrated important results in guiding intensive care unit patients out of the ventilator.Early prediction of the indications for withdrawal of non-invasive ventilator and early evaluation of patients to avoid or reduce disease progression are very important.AIM To explore the predictive value of DUS indexes for non-invasive ventilation outcome in patients with AECOPD.METHODS Ninety-four patients with AECOPD who received mechanical ventilation in our hospital from January 2022 to December 2023 were retrospectively analyzed,and they were divided into a successful ventilation group(68 cases)and a failed ventilation group(26 cases)according to the outcome of ventilation.The clinical data of patients with successful and failed noninvasive ventilation were compared,and the independent predictors of noninvasive ventilation outcomes in AECOPD patients were identified by multivariate logistic regression analysis.RESULTS There were no significant differences in gender,age,body mass index,complications,systolic pressure,heart rate,mean arterial pressure,respiratory rate,oxygen saturation,partial pressure of oxygen,oxygenation index,or time of inspiration between patients with successful and failed mechanical ventilation(P>0.05).The patients with successful noninvasive ventilation had shorter hospital stays and lower partial pressure of carbon dioxide(PaCO_(2))than those with failed treatment,while potential of hydrogen(pH),diaphragm thickening fraction(DTF),diaphragm activity,and diaphragm movement time were significantly higher than those with failed treatment(P<0.05).pH[odds ratio(OR)=0.005,P<0.05],PaCO_(2)(OR=0.430,P<0.05),and DTF(OR=0.570,P<0.05)were identified to be independent factors influencing the outcome of mechanical ventilation in AECOPD patients.CONCLUSION The DUS index DTF can better predict the outcome of non-invasive ventilation in AECOPD patients.展开更多
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing...Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.展开更多
Introduction: Traumatic diaphragmatic hernia is a rare condition in children complicating closed or penetrating trauma to the abdomen and thorax. We report the case of an 11-year-old girl with a traumatic diaphragmati...Introduction: Traumatic diaphragmatic hernia is a rare condition in children complicating closed or penetrating trauma to the abdomen and thorax. We report the case of an 11-year-old girl with a traumatic diaphragmatic hernia. Case Presentation: An 11-year-old girl was seen in the paediatric surgery department for a thoracolumbar spine deformity and intermittent chest pain. These symptoms occurred after a domestic accident involving a fall from a low wall onto the thoracolumbar spine 5 months previously. The diagnosis was suggested by the presence of a left hemithoracic hydroaera and confirmed by a thoraco-abdominal CT scan. Surgical exploration revealed a linear rupture of the entire left hemi-diaphragm with herniation of the stomach, small intestine, cecum, transverse colon and omentum. We performed a double-layer suture of the diaphragmatic rupture with a non-absorbable suture without edge rejuvenation after the reduction of the hernia. The outcome was favourable with normal postoperative radiographs at one year follow-up. Conclusion: Traumatic diaphragmatic hernia, although uncommon and difficult to diagnose, is a condition that is relatively easy to manage surgically, even if it is discovered late. In all cases of trauma to the thoracolumbar spine, regular follow-up and repeat X-rays are necessary if pain persists.展开更多
Aim: To explore the application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients. Methods: A total of 98 ...Aim: To explore the application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients. Methods: A total of 98 lung cancer patients admitted to our hospital from April 2020 to November 2021 were selected as the observation objects, and then divided into a control group and an observation group using the random number table method, with 49 cases in each group. The control group received routine admission guidance and active respiratory circulation training, while the observation group was supplemented with external diaphragm pacemaker on the basis of the control group. The intervention effect was evaluated by blood gas indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators before and after intervention. Results: Before intervention, there were no significant differences in blood gas analysis indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators between the two groups (P > 0.05). After intervention, the improvement degree of the above indicators in the observation group was higher than that in the control group (P < 0.05). Conclusions: The application of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients is significant, which can effectively improve the pulmonary function, blood gas function, and diaphragm function of lung cancer patients after surgery, and improve the activities of daily living and quality of life of patients.展开更多
The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway...The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity.展开更多
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
文摘BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease(AECOPD)is often combined with respiratory failure,which increases the patient's morbidity and mortality.Diaphragm ultrasound(DUS)has developed rapidly in the field of critical care in recent years.Studies with DUS monitoring diaphragm-related rapid shallow breathing index have demonstrated important results in guiding intensive care unit patients out of the ventilator.Early prediction of the indications for withdrawal of non-invasive ventilator and early evaluation of patients to avoid or reduce disease progression are very important.AIM To explore the predictive value of DUS indexes for non-invasive ventilation outcome in patients with AECOPD.METHODS Ninety-four patients with AECOPD who received mechanical ventilation in our hospital from January 2022 to December 2023 were retrospectively analyzed,and they were divided into a successful ventilation group(68 cases)and a failed ventilation group(26 cases)according to the outcome of ventilation.The clinical data of patients with successful and failed noninvasive ventilation were compared,and the independent predictors of noninvasive ventilation outcomes in AECOPD patients were identified by multivariate logistic regression analysis.RESULTS There were no significant differences in gender,age,body mass index,complications,systolic pressure,heart rate,mean arterial pressure,respiratory rate,oxygen saturation,partial pressure of oxygen,oxygenation index,or time of inspiration between patients with successful and failed mechanical ventilation(P>0.05).The patients with successful noninvasive ventilation had shorter hospital stays and lower partial pressure of carbon dioxide(PaCO_(2))than those with failed treatment,while potential of hydrogen(pH),diaphragm thickening fraction(DTF),diaphragm activity,and diaphragm movement time were significantly higher than those with failed treatment(P<0.05).pH[odds ratio(OR)=0.005,P<0.05],PaCO_(2)(OR=0.430,P<0.05),and DTF(OR=0.570,P<0.05)were identified to be independent factors influencing the outcome of mechanical ventilation in AECOPD patients.CONCLUSION The DUS index DTF can better predict the outcome of non-invasive ventilation in AECOPD patients.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFF0600208)National Natural Science Foundation of China (Grant No.52005170)Hunan Provincial Science and Technology Innovation Program of China (Grant No.2020RC4018)。
文摘Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.
文摘Introduction: Traumatic diaphragmatic hernia is a rare condition in children complicating closed or penetrating trauma to the abdomen and thorax. We report the case of an 11-year-old girl with a traumatic diaphragmatic hernia. Case Presentation: An 11-year-old girl was seen in the paediatric surgery department for a thoracolumbar spine deformity and intermittent chest pain. These symptoms occurred after a domestic accident involving a fall from a low wall onto the thoracolumbar spine 5 months previously. The diagnosis was suggested by the presence of a left hemithoracic hydroaera and confirmed by a thoraco-abdominal CT scan. Surgical exploration revealed a linear rupture of the entire left hemi-diaphragm with herniation of the stomach, small intestine, cecum, transverse colon and omentum. We performed a double-layer suture of the diaphragmatic rupture with a non-absorbable suture without edge rejuvenation after the reduction of the hernia. The outcome was favourable with normal postoperative radiographs at one year follow-up. Conclusion: Traumatic diaphragmatic hernia, although uncommon and difficult to diagnose, is a condition that is relatively easy to manage surgically, even if it is discovered late. In all cases of trauma to the thoracolumbar spine, regular follow-up and repeat X-rays are necessary if pain persists.
文摘Aim: To explore the application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients. Methods: A total of 98 lung cancer patients admitted to our hospital from April 2020 to November 2021 were selected as the observation objects, and then divided into a control group and an observation group using the random number table method, with 49 cases in each group. The control group received routine admission guidance and active respiratory circulation training, while the observation group was supplemented with external diaphragm pacemaker on the basis of the control group. The intervention effect was evaluated by blood gas indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators before and after intervention. Results: Before intervention, there were no significant differences in blood gas analysis indicators, pulmonary function indicators, diaphragm function indicators, sputum comfort degree, and activity tolerance indicators between the two groups (P > 0.05). After intervention, the improvement degree of the above indicators in the observation group was higher than that in the control group (P < 0.05). Conclusions: The application of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients is significant, which can effectively improve the pulmonary function, blood gas function, and diaphragm function of lung cancer patients after surgery, and improve the activities of daily living and quality of life of patients.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874055,52074047,and 52064016).
文摘The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity.