High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-t...Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.展开更多
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr...Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.展开更多
To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical...Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.展开更多
Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevat...Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevated dielectric resonator antenna(DRA)on a small metal plate above a sizeable common ground plane.The DRA is designed in its T Eδ11 mode,acting like a magnetic dipole.The surface current excited by the differential probes flowing on the small ground plane is equivalent to an electric dipole.Since these two equivalent dipoles are orthogonal,they have the magnetoelectric dipole characteristics with reduced backward radiation.Meanwhile,the small ground planes can be treated as decoupling structures to provide a neutralization path to cancel the original coupling path.A linearly-polarized 4-element prototype array was verified experimentally in previous work.Here,a dual-polarized DRMED antenna is presented to construct a 2-element and 4×4 array for BS applications.To investigate its MIMO performance,sophisticated multi-cell scenario simulations are carried out.By using the proposed dualpolarized DRMED array,the cellular system capacityis improved by 118.6%compared to a conventional DRA array.This significant MIMO system improvement is mainly due to the reduced backward radiation and,therefore,reduced inter-cell interferences.Measurements align well with the simulations.展开更多
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f...This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.展开更多
We explore the use of the parallel-plate resonator for the study of thin cuboid samples over a wide range of magnetic resonance frequencies.The parallel-plate resonator functions at frequencies from tens to hundreds o...We explore the use of the parallel-plate resonator for the study of thin cuboid samples over a wide range of magnetic resonance frequencies.The parallel-plate resonator functions at frequencies from tens to hundreds of MHz.Seven parallel-plate resonators are presented and discussed in a frequency range from 8 to 500 MHz.Magnetic resonance experiments were performed on both horizontal and vertical bore magnet systems with lithium and hydrogen nuclei.Parallel-plate radiofrequency(RF)probes are easy to build and easy to optimize.Experiments and simulations showed good sensitivity of the parallel-plate RF probe geometry with a small decrease in sensitivity at higher frequencies.展开更多
BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diff...BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.展开更多
BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for indivi...BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.展开更多
Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and s...Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and shock hazards.Single-spring-mass resonators and dual-spring-mass resonators were designed and made using lead or aluminum blocks and SWPB springs encased by PMMA(polymethyl methacrylate)or aluminum frames.These resonators were placed into mortar blocks to make metamortar specimens.Vibration attenuation effect was investigated by sweeping vibration with frequency from 50 Hz to 2000 Hz.All these meta-mortar blocks exhibit excellent vibration attenuation ability in the designed band gaps.With dual-spring-mass resonators,meta-mortar blocks have two distinct vibration attenuation bands.展开更多
This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in t...This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption.展开更多
AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-con...AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.展开更多
We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within...We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window,which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler–Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.展开更多
In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional li...In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional light transmission easy to achieve. This paper presents a novel physical model of a hexagonal-star valley photonic crystal. Simulations based on the finite element method(FEM) are performed to investigate the propagation of TM polarized mode and its application to ring resonators. The results show that such a topologically triangular ring resonator exhibits an optimum quality factor Q of about 1.25×104, and Q has a maximum value for both frequency and the cavity length L. Our findings are expected to have significant implications for developing topological lasers and wavelength division multiplexers.展开更多
The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling E...The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.展开更多
BACKGROUND High-grade pancreatic intraepithelial neoplasia(PanIN)exhibits no mass and is not detected by any examination modalities.However,it can be diagnosed by pancreatic juice cytology from indirect findings.Most ...BACKGROUND High-grade pancreatic intraepithelial neoplasia(PanIN)exhibits no mass and is not detected by any examination modalities.However,it can be diagnosed by pancreatic juice cytology from indirect findings.Most previous cases were diagnosed based on findings of a focal stricture of the main pancreatic duct(MPD)and caudal MPD dilatation and subsequent pancreatic juice cytology using endoscopic retrograde cholangiopancreatography(ERCP).We experienced a case of high-grade PanIN with an unclear MPD over a 20-mm range,but without caudal MPD dilatation on magnetic resonance cholangiopancreatography(MRCP).CASE SUMMARY A 60-year-old female patient underwent computed tomography for a follow-up of uterine cancer post-excision,which revealed pancreatic cysts.MRCP revealed an unclear MPD of the pancreatic body at a 20-mm length without caudal MPD dilatation.Thus,course observation was performed.After 24 mo,MRCP revealed an increased caudal MPD caliber and a larger pancreatic cyst.We performed ERCP and detected atypical cells suspected of adenocarcinoma by serial pancreatic juice aspiration cytology examination.We performed a distal pancreatectomy and obtained a histopathological diagnosis of high-grade PanIN.Pancreatic parenchyma invasion was not observed,and curative resection was achieved.CONCLUSION High-grade Pan-IN may cause MPD narrowing in a long range without caudal MPD dilatation.展开更多
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realizatio...This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realization of a quasi-planar DP antenna.It combines the dual advantages of the conventional microstrip patch(MP)antenna and dielectric resonator(DR)antenna in terms of profile,gain,bandwidth,radiation efficiency,and design freedom.Furthermore,the DP antenna inherits the multi-mode characteristic of the DR antenna,thus it has a large number of high-order modes,including TMmn mode and TEmn mode.The high-order modes are widely applied,for example,by combining with the dominant TM10 mode to expand the bandwidth,or selecting multiple higher-order modes to implement a high-gain antenna.Additionally,the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design.In this paper,the design theories and techniques of DP antenna are introduced and investigated,including calculation and control methods of the resonant mode frequencies,analysis of the radiation mechanism,and applications of the multi-mode characteristic.This overview could provide guidance for the subsequent antenna design,thus effectively avoid time-consuming optimization.展开更多
BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a we...BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended.展开更多
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718802 and 2018YFA0209002)the National Natural Science Foundation of China(Grant Nos.62274086,62288101,61971464,62101243,and 11961141002)+3 种基金the Excellent Young Scholar Program of Jiangsu Province,China(Grant Nos.BK20200008 and BK20200060)the Outstanding Postdoctoral Program of Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universitiesthe Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
基金Supports from National Natural Science Foundation of China(Grant Nos.U20A20286 and 11972184)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2021ZDK006)+1 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201286)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)are gratefully acknowledged.
文摘Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925304 and 12020101002)the Chinese Academy of Sciences Program(Grant No.GJJSTD20210002).
文摘Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
基金supported by the National Key Research and Development Program of China under Grant 2020YFA0709800.
文摘Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevated dielectric resonator antenna(DRA)on a small metal plate above a sizeable common ground plane.The DRA is designed in its T Eδ11 mode,acting like a magnetic dipole.The surface current excited by the differential probes flowing on the small ground plane is equivalent to an electric dipole.Since these two equivalent dipoles are orthogonal,they have the magnetoelectric dipole characteristics with reduced backward radiation.Meanwhile,the small ground planes can be treated as decoupling structures to provide a neutralization path to cancel the original coupling path.A linearly-polarized 4-element prototype array was verified experimentally in previous work.Here,a dual-polarized DRMED antenna is presented to construct a 2-element and 4×4 array for BS applications.To investigate its MIMO performance,sophisticated multi-cell scenario simulations are carried out.By using the proposed dualpolarized DRMED array,the cellular system capacityis improved by 118.6%compared to a conventional DRA array.This significant MIMO system improvement is mainly due to the reduced backward radiation and,therefore,reduced inter-cell interferences.Measurements align well with the simulations.
文摘This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.
基金the Canada Chairs program for a Research Chair in MRI of Materials[950-230894]an NSERC Discovery Grant[2015-6122].GRG thanks NSERC for a Discovery Grant[RGPIN-2017-06095].
文摘We explore the use of the parallel-plate resonator for the study of thin cuboid samples over a wide range of magnetic resonance frequencies.The parallel-plate resonator functions at frequencies from tens to hundreds of MHz.Seven parallel-plate resonators are presented and discussed in a frequency range from 8 to 500 MHz.Magnetic resonance experiments were performed on both horizontal and vertical bore magnet systems with lithium and hydrogen nuclei.Parallel-plate radiofrequency(RF)probes are easy to build and easy to optimize.Experiments and simulations showed good sensitivity of the parallel-plate RF probe geometry with a small decrease in sensitivity at higher frequencies.
基金the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,NO.CY2021-QNB09the Science and Technology Project of Gansu Province,NO.21JR11RA122+1 种基金Department of Education of Gansu Province:Innovation Fund Project,NO.2022B-056Gansu Province Clinical Research Center for Functional and Molecular Imaging,NO.21JR7RA438.
文摘BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.
文摘BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.
基金Supports from National Natural Science Foundation of China(Grant No.12002160,and Grant No.11972184)China National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(Grant No.6142902200203)+2 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200412,BK20201286)National Defense Basic Scientific Research Program of China(TCA20030)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)。
文摘Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and shock hazards.Single-spring-mass resonators and dual-spring-mass resonators were designed and made using lead or aluminum blocks and SWPB springs encased by PMMA(polymethyl methacrylate)or aluminum frames.These resonators were placed into mortar blocks to make metamortar specimens.Vibration attenuation effect was investigated by sweeping vibration with frequency from 50 Hz to 2000 Hz.All these meta-mortar blocks exhibit excellent vibration attenuation ability in the designed band gaps.With dual-spring-mass resonators,meta-mortar blocks have two distinct vibration attenuation bands.
基金supported in part by the National Key Research and Development Program of China (Grant No.2020YFB2008800)the Nanchang Institute for Microtechnology of Tianjin University。
文摘This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption.
基金Supported by National Natural Science Foundation of China(No.82070998)Young Scientists Fund of the National Natural Science Foundation of China(No.82101174)+3 种基金Program of Beijing Hospitals Authority(No.XMLX202103)Program of Beijing Municipal Science&Technology Commission(No.Z201100005520044)Capital Health Development Research Special Project(No.2022-1-2053)Beijing Hospitals Authority Youth Programme(No.QML20230205).
文摘AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.
基金supported by the National Natural Science Foundation of China (Grant No. 12104227)the Scientific Research Foundation of Nanjing Institute of Technology (Grant No. YKJ202021)the Guizhou Provincial Science and Technology Projects (Grant No. ZK [2022] general 035)。
文摘We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window,which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler–Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerically demonstrate the effect using full-wave simulation. Feasible implication of this effect and its potential applications are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 1217040857)。
文摘In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional light transmission easy to achieve. This paper presents a novel physical model of a hexagonal-star valley photonic crystal. Simulations based on the finite element method(FEM) are performed to investigate the propagation of TM polarized mode and its application to ring resonators. The results show that such a topologically triangular ring resonator exhibits an optimum quality factor Q of about 1.25×104, and Q has a maximum value for both frequency and the cavity length L. Our findings are expected to have significant implications for developing topological lasers and wavelength division multiplexers.
基金supported by the National Natural Science Foundation of China(51979130,11847009)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(22KJB580005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX221961)。
文摘The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.
文摘BACKGROUND High-grade pancreatic intraepithelial neoplasia(PanIN)exhibits no mass and is not detected by any examination modalities.However,it can be diagnosed by pancreatic juice cytology from indirect findings.Most previous cases were diagnosed based on findings of a focal stricture of the main pancreatic duct(MPD)and caudal MPD dilatation and subsequent pancreatic juice cytology using endoscopic retrograde cholangiopancreatography(ERCP).We experienced a case of high-grade PanIN with an unclear MPD over a 20-mm range,but without caudal MPD dilatation on magnetic resonance cholangiopancreatography(MRCP).CASE SUMMARY A 60-year-old female patient underwent computed tomography for a follow-up of uterine cancer post-excision,which revealed pancreatic cysts.MRCP revealed an unclear MPD of the pancreatic body at a 20-mm length without caudal MPD dilatation.Thus,course observation was performed.After 24 mo,MRCP revealed an increased caudal MPD caliber and a larger pancreatic cyst.We performed ERCP and detected atypical cells suspected of adenocarcinoma by serial pancreatic juice aspiration cytology examination.We performed a distal pancreatectomy and obtained a histopathological diagnosis of high-grade PanIN.Pancreatic parenchyma invasion was not observed,and curative resection was achieved.CONCLUSION High-grade Pan-IN may cause MPD narrowing in a long range without caudal MPD dilatation.
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
基金supported by the Natural Science Foundation of Jiangsu Province under Grant BK20201438by the Natural Science Research Project of Jiangsu Provincial Institutions of Higher Education under Grant 20KJA510002by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX202825.
文摘This paper presents an overview of dielectric patch(DP)antennas developed in recent years.The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here,enabling the easy realization of a quasi-planar DP antenna.It combines the dual advantages of the conventional microstrip patch(MP)antenna and dielectric resonator(DR)antenna in terms of profile,gain,bandwidth,radiation efficiency,and design freedom.Furthermore,the DP antenna inherits the multi-mode characteristic of the DR antenna,thus it has a large number of high-order modes,including TMmn mode and TEmn mode.The high-order modes are widely applied,for example,by combining with the dominant TM10 mode to expand the bandwidth,or selecting multiple higher-order modes to implement a high-gain antenna.Additionally,the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design.In this paper,the design theories and techniques of DP antenna are introduced and investigated,including calculation and control methods of the resonant mode frequencies,analysis of the radiation mechanism,and applications of the multi-mode characteristic.This overview could provide guidance for the subsequent antenna design,thus effectively avoid time-consuming optimization.
文摘BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended.