BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen...BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.展开更多
Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:...Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:A rat model of lower extremity ASO was established,and blood samples from patients with lower extremity ASO before and after surgery were obtained.ELISA was used to detect interleukin 6(IL-6),IL-10,and IL-17.Real-time RCR and Western blot analyses were used to detect Foxp3,IL-6,IL-10,and IL-17 expression.Moreover,flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.Results:Compared with the control group,the iliac artery wall of ASO rats showed significant hyperplasia,and the concentrations of cholesterol and triglyceride were significantly increased(P<0.01),indicating the successful establishment of ASO.Moreover,the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased(P<0.05),while the IL-10 level was significantly decreased(P<0.05).In addition to increased IL-6 and IL-17 levels,the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group.The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased(P<0.05).These alternations were also observed in ASO patients.After endovascular surgery(such as percutaneous transluminal angioplasty and arterial stenting),all these changes were significantly improved(P<0.05).Conclusions:The Th17/Treg and M1/M2 ratios were significantly increased in ASO,and surgery can effectively improve the balance of Th17/Treg,and reduce the ratio of M1/M2,and the expression of inflammatory factors.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
【目的】探讨检测急性肺栓塞患者的血浆脑钠肽(BNP)、肌钙蛋白I(cTnI)及D‐二聚体(D‐dimer)水平变化的临床意义。【方法】选择本院2009年1月至2013年12月收治的急性肺栓塞患者64例,根据患者病情分为大面积肺栓塞组( n =27)...【目的】探讨检测急性肺栓塞患者的血浆脑钠肽(BNP)、肌钙蛋白I(cTnI)及D‐二聚体(D‐dimer)水平变化的临床意义。【方法】选择本院2009年1月至2013年12月收治的急性肺栓塞患者64例,根据患者病情分为大面积肺栓塞组( n =27)和非大面积肺栓塞组( n =37),对两组患者血浆cTnI、BNP及D‐dimer水平进行测定,观察比较两组患者各指标水平的变化及右心功能和病死率。【结果】大面积肺栓塞组BN P、血浆cTnI水平明显高于非大面积肺栓塞组,两组比较差异有显著性( P <0.05);两组D‐dimer浓度比较差异无统计学意义( P >0.05);大面积肺栓塞组的右心功能不全者和病死率均高于非大面积肺栓塞组,两组比较差异有统计学意义( P <0.05)。【结论】检测BNP、cTnI及D‐dimer水平对APE患者临床诊断、临床决策及预后判断具有重要的临床意义。展开更多
Three Epimedium species, E. pubescens Maxim., E. sagittatum (Sieb. & Zucc.) Maxim., and E. wushanense T. S. Ying, which are sympatrically distributed in the western Hubei Province, have been used in traditional Chi...Three Epimedium species, E. pubescens Maxim., E. sagittatum (Sieb. & Zucc.) Maxim., and E. wushanense T. S. Ying, which are sympatrically distributed in the western Hubei Province, have been used in traditional Chinese medicine (TCM) for about 2,000 years. Genetic variability and population genetic structure of 11 natural populations of these Epimedium species were investigated using isoelectric focusing in thin-layer polyacrylamide slab gels. Of the 22 enzyme systems prescreened, six coding for 13 loci and 45 alleles were resolved, which were used for analyzing genetic diversity and population structure at both intraspecific and interspecific levels. The results showed that: l) high levels of genetic diversity were observed in all three species (A = 2.6-3.2, P = 69.2%-84.6%, Ho= 0.274-0.377, HE= 0.282-0.369), which were higher than that of other herbaceous and aulmal-pollinated species with similar life-history characteristics; 2) there was significant deviation from Hardy-Weinberg Equilibrium, with one half of the loci showing heterozygote excess and the other homozygote excess, in all populations, suggesting the complicated breeding system of Epimedium species; 3) the low level of intraspecific and interspecific genetic differentiation (GST= 0.0246-0.0409 and 0.0495-0.1213, respectively) indicated a high level of gene flow among populations and close genetic relationship among the three species; and 4) UPGMA cluster analysis further showed that E. pubescens was more closely related to E. sagittatum than to E. wushanense, which was in good agreement with the morphological characters and the recent phylogenetic analysis of these species. On the basis of these results, it was concluded that the mixed breeding system, long-lived perennial life form, ancient evolutionary history, and seed dispersal by ants in Epimedium are responsible for the genetic variation and population structure of these species.展开更多
基金Supported by Health Science and Technology Project of Tianjin Health Commission,No.ZC20190Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-005ATianjin Medical University Clinical Research Fund,No.22ZYYLCCG04.
文摘BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.
基金supported by Natural Science Foundation of Hainan Province(820MS135)Hainan Provincial Health Commission 2023 Provincial Key Clinical Discipline(Clinical Medical Center)Construction Unit Fund Project(Qiongwei Yihan[2022]No.341)Hainan Provincial Health Technology Innovation Joint Project(WSJK2024MS209).
文摘Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:A rat model of lower extremity ASO was established,and blood samples from patients with lower extremity ASO before and after surgery were obtained.ELISA was used to detect interleukin 6(IL-6),IL-10,and IL-17.Real-time RCR and Western blot analyses were used to detect Foxp3,IL-6,IL-10,and IL-17 expression.Moreover,flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.Results:Compared with the control group,the iliac artery wall of ASO rats showed significant hyperplasia,and the concentrations of cholesterol and triglyceride were significantly increased(P<0.01),indicating the successful establishment of ASO.Moreover,the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased(P<0.05),while the IL-10 level was significantly decreased(P<0.05).In addition to increased IL-6 and IL-17 levels,the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group.The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased(P<0.05).These alternations were also observed in ASO patients.After endovascular surgery(such as percutaneous transluminal angioplasty and arterial stenting),all these changes were significantly improved(P<0.05).Conclusions:The Th17/Treg and M1/M2 ratios were significantly increased in ASO,and surgery can effectively improve the balance of Th17/Treg,and reduce the ratio of M1/M2,and the expression of inflammatory factors.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘【目的】探讨检测急性肺栓塞患者的血浆脑钠肽(BNP)、肌钙蛋白I(cTnI)及D‐二聚体(D‐dimer)水平变化的临床意义。【方法】选择本院2009年1月至2013年12月收治的急性肺栓塞患者64例,根据患者病情分为大面积肺栓塞组( n =27)和非大面积肺栓塞组( n =37),对两组患者血浆cTnI、BNP及D‐dimer水平进行测定,观察比较两组患者各指标水平的变化及右心功能和病死率。【结果】大面积肺栓塞组BN P、血浆cTnI水平明显高于非大面积肺栓塞组,两组比较差异有显著性( P <0.05);两组D‐dimer浓度比较差异无统计学意义( P >0.05);大面积肺栓塞组的右心功能不全者和病死率均高于非大面积肺栓塞组,两组比较差异有统计学意义( P <0.05)。【结论】检测BNP、cTnI及D‐dimer水平对APE患者临床诊断、临床决策及预后判断具有重要的临床意义。
基金This work was supported by the National Natural Science Foundation of China (No. 30570171), 100 Talents Program of Chinese Academy of Sciences (No. 05045112), and Wuhan Chenguang Project (No. 20055003059-45).
文摘Three Epimedium species, E. pubescens Maxim., E. sagittatum (Sieb. & Zucc.) Maxim., and E. wushanense T. S. Ying, which are sympatrically distributed in the western Hubei Province, have been used in traditional Chinese medicine (TCM) for about 2,000 years. Genetic variability and population genetic structure of 11 natural populations of these Epimedium species were investigated using isoelectric focusing in thin-layer polyacrylamide slab gels. Of the 22 enzyme systems prescreened, six coding for 13 loci and 45 alleles were resolved, which were used for analyzing genetic diversity and population structure at both intraspecific and interspecific levels. The results showed that: l) high levels of genetic diversity were observed in all three species (A = 2.6-3.2, P = 69.2%-84.6%, Ho= 0.274-0.377, HE= 0.282-0.369), which were higher than that of other herbaceous and aulmal-pollinated species with similar life-history characteristics; 2) there was significant deviation from Hardy-Weinberg Equilibrium, with one half of the loci showing heterozygote excess and the other homozygote excess, in all populations, suggesting the complicated breeding system of Epimedium species; 3) the low level of intraspecific and interspecific genetic differentiation (GST= 0.0246-0.0409 and 0.0495-0.1213, respectively) indicated a high level of gene flow among populations and close genetic relationship among the three species; and 4) UPGMA cluster analysis further showed that E. pubescens was more closely related to E. sagittatum than to E. wushanense, which was in good agreement with the morphological characters and the recent phylogenetic analysis of these species. On the basis of these results, it was concluded that the mixed breeding system, long-lived perennial life form, ancient evolutionary history, and seed dispersal by ants in Epimedium are responsible for the genetic variation and population structure of these species.