Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex ster...Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients,including simple BPH patients,newly diagnosed T2DM patients,T2DM complicated with BPH patients and matched healthy individuals.The G protein-coupled estrogen receptor(GPER)inhibitor G15,GPER knockdown lentivirus,the YAP1 inhibitor verteporfin,YAP1 knockdown/overexpression lentivirus,targeted metabolomics analysis,and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH.The homeostasis of sex steroid hormone is disrupted in the serum of patients,accompanying with the proliferated prostatic epithelial cells(PECs).The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals.Elevated 17β-estradiol(E2)is the key contributor to the disrupted sex steroid hormone homeostasis,and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH.Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose(HG)-induced PECs proliferation through the formation of the YAP1-TEAD4 heterodimer.Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells.The anti-proliferative effects of verteporfin,an inhibitor of YAP1,are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells.Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.展开更多
Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore...Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore innovative approaches in T cell receptor(TCR)engineering and characterization to target the KRAS G12D7-16 mutation,providing potential strategies for overcoming this therapeutic challenge.Methods:In this innovative study,we engineered and characterized two T cell receptors(TCRs),KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation.These TCRs were isolated from tumor-infiltrating lymphocytes(TILs)derived from tumor tissues of patients with the KRAS G12D mutation.We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines.Results:KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope,significantly inducing IFN-γrelease and eliminating tumor cells without cross-reactivity or alloreactivity.Conclusions:The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation,showing potential for significant advancements in cancer immunotherapy.展开更多
In Africa, the prevalence of diabetes is escalating and remains a concern due to the numerous complications it causes. Vascular damage associated with diabetes leads to a prothrombotic state observed in diabetic indiv...In Africa, the prevalence of diabetes is escalating and remains a concern due to the numerous complications it causes. Vascular damage associated with diabetes leads to a prothrombotic state observed in diabetic individuals. Diabetes is a complex and multifactorial disease involving genetic components. With the aim of preventing complications and contributing to an efficient management of diabetes, we investigated genes likely to lead to a risk of thrombosis, in particular the C677T of MTHFR, G20210A of prothrombin, and R506Q of factor V Leiden in type 2 diabetics in Abidjan receiving ambulatory care. A descriptive cross-sectional study was carried out on consenting type 2 diabetic patients. Mutation detection was carried out using the PCR-RFLP method employing restriction enzymes. Hemostasis tests (fibrinogen, D-dimers, fibrin monomers, and von Willebrand factor) were performed using citrate tubes on the Stage? Star Max automated system. Plasminogen activator inhibitor was assayed by ELISA method, and biochemical parameters were determined using the COBAS C311. The study population consisted of 45 diabetic patients, 51.1% of whom presented vascular complications, mainly neuropathy. Disturbances in hemostasis parameters were observed, with 15.5% of patients showing an increase in fibrin monomers. Mutation analysis revealed an absence of factor V mutation (factor V Leiden) and of G20210A mutation of the prothrombin gene. However, 15.6% of subjects had a heterozygous C677T mutation of MTHFR, with 57% of them being anemic. The exploration of biological and genetic factors associated with thrombotic risk is of significant interest in the optimal management of African type 2 diabetics.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82073906 and 82273987)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,and Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant Nos.:KYCX22-2966 and KYCX23-2967).
文摘Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients,including simple BPH patients,newly diagnosed T2DM patients,T2DM complicated with BPH patients and matched healthy individuals.The G protein-coupled estrogen receptor(GPER)inhibitor G15,GPER knockdown lentivirus,the YAP1 inhibitor verteporfin,YAP1 knockdown/overexpression lentivirus,targeted metabolomics analysis,and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH.The homeostasis of sex steroid hormone is disrupted in the serum of patients,accompanying with the proliferated prostatic epithelial cells(PECs).The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals.Elevated 17β-estradiol(E2)is the key contributor to the disrupted sex steroid hormone homeostasis,and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH.Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose(HG)-induced PECs proliferation through the formation of the YAP1-TEAD4 heterodimer.Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells.The anti-proliferative effects of verteporfin,an inhibitor of YAP1,are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells.Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.
基金funded by the key R&D Project of Hubei Province(Social Development),China(2022BCA018)the Cooperative Innovation Center of Industrial Fermentation(Ministry of Education&Hubei Province),China(2022KF16)to Kanghong Hu.
文摘Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore innovative approaches in T cell receptor(TCR)engineering and characterization to target the KRAS G12D7-16 mutation,providing potential strategies for overcoming this therapeutic challenge.Methods:In this innovative study,we engineered and characterized two T cell receptors(TCRs),KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation.These TCRs were isolated from tumor-infiltrating lymphocytes(TILs)derived from tumor tissues of patients with the KRAS G12D mutation.We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines.Results:KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope,significantly inducing IFN-γrelease and eliminating tumor cells without cross-reactivity or alloreactivity.Conclusions:The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation,showing potential for significant advancements in cancer immunotherapy.
文摘In Africa, the prevalence of diabetes is escalating and remains a concern due to the numerous complications it causes. Vascular damage associated with diabetes leads to a prothrombotic state observed in diabetic individuals. Diabetes is a complex and multifactorial disease involving genetic components. With the aim of preventing complications and contributing to an efficient management of diabetes, we investigated genes likely to lead to a risk of thrombosis, in particular the C677T of MTHFR, G20210A of prothrombin, and R506Q of factor V Leiden in type 2 diabetics in Abidjan receiving ambulatory care. A descriptive cross-sectional study was carried out on consenting type 2 diabetic patients. Mutation detection was carried out using the PCR-RFLP method employing restriction enzymes. Hemostasis tests (fibrinogen, D-dimers, fibrin monomers, and von Willebrand factor) were performed using citrate tubes on the Stage? Star Max automated system. Plasminogen activator inhibitor was assayed by ELISA method, and biochemical parameters were determined using the COBAS C311. The study population consisted of 45 diabetic patients, 51.1% of whom presented vascular complications, mainly neuropathy. Disturbances in hemostasis parameters were observed, with 15.5% of patients showing an increase in fibrin monomers. Mutation analysis revealed an absence of factor V mutation (factor V Leiden) and of G20210A mutation of the prothrombin gene. However, 15.6% of subjects had a heterozygous C677T mutation of MTHFR, with 57% of them being anemic. The exploration of biological and genetic factors associated with thrombotic risk is of significant interest in the optimal management of African type 2 diabetics.