期刊文献+
共找到15,039篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental Study on Vortex-Induced Vibration of Rough Risers Coupling with Interference Effect in Tandem Arrangement
1
作者 HU Ze-bo LIU Zhen +4 位作者 LI Peng GUO Hai-yan REN Xiao-hui HOU Hao HAO Lian-hong 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期394-407,共14页
In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference ef... In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference effects on the riser,a VIV experiment of rough risers in tandem arrangement was conducted in a wave−current combined flume.The experiment characterized the risers’roughness by arranging different specifications of attachments on the surface of the risers.Three rough risers with different roughness and smooth risers were arranged in tandem arrangement,with the rough risers arranged downstream.The experimental results indicate that the suppression of the attachments on the downstream risers’vibration are more significant both in the CF and IL directions as the reduced velocity increases.For the downstream riser,the amplitude response of rough riser is more significantly weakened compared with the smooth one at high reduced velocity.For the upstream risers,changes in the roughness and spacing ratio have an impact on their‘lock-in’region.When the roughness of downstream risers is relatively large(0.1300)and the spacing between risers is small(S/D=4.0),the reduced velocity range of‘lock-in’region in the CF direction of upstream risers is obviously expanded,and the displacement in the‘lock-in’region is severer. 展开更多
关键词 marine riser vortex-induced vibration tandem arrangement ROUGHNESS interference effect
下载PDF
Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
2
作者 Xiaojing Lv Weisheng Li +11 位作者 Jin Zhang Yujie Yang Xuefei Jia Yitong Ji Qianqian Lin Wenchao Huang Tongle Bu Zhiwei Ren Canglang Yao Fuzhi Huang Yi-Bing Cheng Jinhui Tong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期64-70,I0003,共8页
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ... Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering. 展开更多
关键词 Wide-bandgap perovskite Surface defect Multifunctional molecule All-perovskite tandem solar cells
下载PDF
Electrochemically Deposited CZTSSe Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%
3
作者 Sun Kyung Hwang Ik Jae Park +3 位作者 Se Won Seo Jae Hyun Park So Jeong Park Jin Young Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期147-152,共6页
In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in im... In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect. 展开更多
关键词 CZTSSe monolithic tandem solar cells PEROVSKITE solution process surface roughness control
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
4
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 Perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
5
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells tandem solar cells Buffer layer Stability
下载PDF
Efficient Monolithic Perovskite/Silicon Tandem Photovoltaics
6
作者 Yong Wang Yu Wang +1 位作者 Feng Gao Deren Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d... Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs. 展开更多
关键词 2-terminal electrical interconnection perovskite/silicon tandem photovoltaics photon management wide-bandgap perovskites
下载PDF
Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide
7
作者 Jingjing Liu Biao Shi +14 位作者 Qiaojing Xu Yucheng Li Yuxiang Li Pengfei Liu Zetong SunLi Xuejiao Wang Cong Sun Wei Han Diannan Li Sanlong Wang Dekun Zhang Guangwu Li Xiaona Du Ying Zhao Xiaodan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期557-570,共14页
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ... Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs. 展开更多
关键词 Perovskite crystallization (111)preferred orientation Defect passivation Perovskite/silicon tandem solar cells
下载PDF
Defect Engineering in Earth-Abundant Cu_(2)ZnSnSe_(4) Absorber Using Efficient Alkali Doping for Flexible and Tandem Solar Cell Applications
8
作者 Muhammad Rehan Ara Cho +11 位作者 Inyoung Jeong Kihwan Kim Asmat Ullah Jun-Sik Cho Joo Hyung Park Yunae Jo Sung Jun Hong Seung Kyu Ahn SeJin Ahn Jae Ho Yun Jihye Gwak Donghyeop Shin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期249-256,共8页
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃... To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications. 展开更多
关键词 alkali doping Earth-abundant Cu_(2)ZnSnSe_(4) flexible solar cells four-terminal tandem cells low-temperature process
下载PDF
DNA Tandem Repeats as Iterable Objects to Count Cell Divisions: A Computational Model
9
作者 Marco Franco Giulio Regolini 《Advances in Bioscience and Biotechnology》 CAS 2024年第4期207-234,共28页
Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in... Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in the great majority of invertebrates) but so far nothing is known about the mechanism used by cells to count precise numbers of divisions. In vertebrates, each species has its invariable deterministic numbers of somites, vertebrae, fingers, and teeth: counting the number of iterations is a widespread process in living beings;nonetheless, it remains an unanswered question and a great challenge in cell biology. This paper introduces a computational model to investigate the possible role of satellite DNA in counting cell divisions, showing how cells may operate under Boolean logic algebra. Satellite DNA, made up of repeated monomers and subject to high epigenetic methylation rates, is very similar to iterable sequences used in programming: just like in the “iteration protocol” of algorithms, the epigenetic machinery may run over linear tandem repeats (that hold cell-fate data), read and orderly mark one monomer per cell-cycle (cytosine methylation), keep track and transmit marks to descendant cells, sending information to cell-cycle regulators. 展开更多
关键词 Satellite DNA tandem-Repeats EPIGENETICS
下载PDF
Research on the Upper Limit of Accuracy for Predicting Theoretical Tandem Mass Spectrometry
10
作者 Changjiu He Xiaoyu Wang +1 位作者 Mingming Lyu Xinye Bian 《Journal of Computer and Communications》 2024年第3期184-195,共12页
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy... In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions. 展开更多
关键词 tandem Mass Spectrometry Spectral Prediction Theoretical Limit
下载PDF
GEDI与Tandem-X DEM估测密林林下地形性能评价
11
作者 黄佳鹏 夏婷婷 宇洋 《农业机械学报》 EI CAS CSCD 北大核心 2023年第9期279-287,共9页
针对密林情况下,GEDI数据与现有的Tandem-X DEM数字地面模型估测林下地形精度没有进行整体评价问题,拟以密林情况作为主要分析场景,通过提取GEDI L2A数据产品对应光斑的经纬度、林下地形信息与数据质量筛选参数,开展数据质量筛选,用以... 针对密林情况下,GEDI数据与现有的Tandem-X DEM数字地面模型估测林下地形精度没有进行整体评价问题,拟以密林情况作为主要分析场景,通过提取GEDI L2A数据产品对应光斑的经纬度、林下地形信息与数据质量筛选参数,开展数据质量筛选,用以估测基于GEDI数据的林下地形数据,与Tandem-X DEM数据估测密林情况下研究区林下地形开展比较,并进一步探究冠层高度、森林覆盖度与植被类型对估测精度的影响。GEDI与Tandem-X DEM的R~2分别为0.99和0.98,GEDI估测林下地形结果的RMSE、Average与STD分别6.49、-1.92、4.42 m, Tandem-X DEM估测林下地形结果的RMSE、Average与STD分别为18.15、14.63、7.35 m。GEDI数据在混交林和稀疏草原情况下RMSE与Average分别变化8.05 m和6.04 m, Tandem-X DEM数据在常绿针叶林与农田/天然植被情况下,RMSE与Average变化幅度为21.63、26.43 m。实验结果表明,GEDI与Tandem-X DEM数据与机载验证数据存在强相关性,且GEDI相对Tandem-X DEM数据表现出更优的评价标准;地表植被类型相对冠层高度和植被覆盖度会对两数据估测林下地形精度产生更大的影响。 展开更多
关键词 林下地形 密林区域 精度评估 GEDI tandem-X DEM
下载PDF
4‑Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22%Efficiency 被引量:2
12
作者 Ling Liu Hanrui Xiao +10 位作者 Ke Jin Zuo Xiao Xiaoyan Du Keyou Yan Feng Hao Qinye Bao Chenyi Yi Fangyang Liu Wentao Wang Chuantian Zuo Liming Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期172-181,共10页
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei... After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter. 展开更多
关键词 4-Terminal tandem solar cells Inorganic perovskite solar cells Organic solar cells SEMITRANSPARENT Drop-coating
下载PDF
Growth of tandem long-mat rice seedlings using controlled release fertilizers:Mechanical transplantation can be more economical and high yielding 被引量:1
13
作者 HE Wen-jun HE Bin +4 位作者 WU Bo-yang WANG Yu-hui YAN Fei-yu DING Yan-feng LI Gang-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3652-3666,共15页
The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery... The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings. 展开更多
关键词 machine-transplanted rice tandem long-mat seedlings controlled release fertilizer seedling quality yield
下载PDF
Tandem Mass Tag-based proteomics analysis reveals the vital role of inflammation in traumatic brain injury in a mouse model 被引量:1
14
作者 Jin-Qian Dong Qian-Qian Ge +6 位作者 Sheng-Hua Lu Meng-Shi Yang Yuan Zhuang Bin Zhang Fei Niu Xiao-Jian Xu Bai-Yun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期155-161,共7页
Proteomics is a powerful tool that can be used to elucidate the underlying mechanisms of diseases and identify new biomarkers.Therefore,it may also be helpful for understanding the detailed pathological mechanism of t... Proteomics is a powerful tool that can be used to elucidate the underlying mechanisms of diseases and identify new biomarkers.Therefore,it may also be helpful for understanding the detailed pathological mechanism of traumatic brain injury(TBI).In this study,we performed Tandem Mass Tag-based quantitative analysis of cortical proteome profiles in a mouse model of TBI.Our results showed that there were 302 differentially expressed proteins in TBI mice compared with normal mice 7 days after injury.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that these differentially expressed proteins were predominantly involved in inflammatory responses,including complement and coagulation cascades,as well as chemokine signaling pathways.Subsequent transcription factor analysis revealed that the inflammation-related transcription factors NF-κB1,RelA,IRF1,STAT1,and Spi1 play pivotal roles in the secondary injury that occurs after TBI,which further corroborates the functional enrichment for inflammatory factors.Our results suggest that inflammation-related proteins and inflammatory responses are promising targets for the treatment of TBI. 展开更多
关键词 bioinformatics complement cascade mass spectrometry neuroinflammation PROTEOMICS secondary injury subacute phase tandem mass tag transcription factor traumatic brain injury
下载PDF
Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves 被引量:1
15
作者 Yuheng Zeng Zetao Ding +11 位作者 Zunke Liu Wei Liu Mingdun Liao Xi Yang Zhiqin Ying Jingsong Sun Jiang Sheng Baojie Yan Haiyan He Chunhui Shou Zhenhai Yang Jichun Ye 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期68-77,共10页
In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/... In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells. 展开更多
关键词 monolithic perovskite/silicon tandem solar cell efficiency-loss analysis dual two-diode model SPICE numerical simula-tion
下载PDF
基于TerraSAR-X/TanDEM-X数据的森林高度反演算法研究
16
作者 申晨 岳彩荣 +2 位作者 章皖秋 朱腾 张金兰 《林业调查规划》 2023年第2期16-25,共10页
基于RVoG模型,对传统三阶段算法及其改进算法进行研究,以云南省西双版纳州勐腊县为研究区,以TerraSAR-X/TanDEM-X数据为数据源进行森林高度反演算法研究,并结合野外实测数据进行结果验证。结果表明,三阶段改进算法对森林高度反演精度优... 基于RVoG模型,对传统三阶段算法及其改进算法进行研究,以云南省西双版纳州勐腊县为研究区,以TerraSAR-X/TanDEM-X数据为数据源进行森林高度反演算法研究,并结合野外实测数据进行结果验证。结果表明,三阶段改进算法对森林高度反演精度优于传统三阶段算法。三阶段改进算法对天然林高度反演精度较高;三阶段算法对橡胶林高度反演精度较高。 展开更多
关键词 森林高度反演算法 TerraSAR-X/tandem-X数据 极化干涉SAR 散射机制 平地效应
下载PDF
双基线TanDEM-X InSAR数据的森林高度反演
17
作者 欧蔓 朱建军 +1 位作者 张涛 胡华参 《测绘工程》 2023年第3期8-13,共6页
森林高度是进行森林资源管理的重要基础数据,通常使用RVoG模型并结合PolInSAR技术获取,然而目前的PolInSAR数据均通过重轨飞行方式采集,不利于大范围、高精度森林高度测绘。TanDEM-X数据无时间去相干与大气干扰,为森林高度测绘提供了合... 森林高度是进行森林资源管理的重要基础数据,通常使用RVoG模型并结合PolInSAR技术获取,然而目前的PolInSAR数据均通过重轨飞行方式采集,不利于大范围、高精度森林高度测绘。TanDEM-X数据无时间去相干与大气干扰,为森林高度测绘提供了合适的数据来源。但TanDEM-X InSAR数据主要为单极化模式,由于观测信息不足,不满足RVoG模型的解算要求。因此,文中利用双基线TanDEM-X InSAR数据反演森林高度。该方法考虑地形影响采用S-RVoG模型反演森林高度,首先仅使用S-RVoG模型相干性信息建立关系,并通过双基线下相位信息之间的关系进行约束。反演森林高度依赖于消光系数的选择,依据模型相干性对森林高度的敏感性进行分析,并利用LiDAR数据作为先验信息进行消光系数的选择。为了验证本方法,采用了瑞典与西班牙实验区数据进行双基线森林高度反演并利用实验区存在的LiDAR树高数据验证方法的精度,两实验区精度分别为1.86 m与2.43 m。 展开更多
关键词 双基线 tandem-X InSAR数据 RVoG模型 森林高度
下载PDF
Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica
18
作者 Mengting Liu Xuexue Dong +3 位作者 Zengjing Guo Aihua Yuan Shuying Gao Fu Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期236-245,共10页
The direct tandem oxidation synthesis of benzenediol from benzene could simplify or even avoid the separation and purification of reaction intermediates, which is promising but challenged because of the further requir... The direct tandem oxidation synthesis of benzenediol from benzene could simplify or even avoid the separation and purification of reaction intermediates, which is promising but challenged because of the further required immediate consecutive activation of intermediate phenol. In this work, a synergistic benzene tandem-oxidation catalyst that V-Cu bimetallic oxides modified nanoporous silica(VCu-NS)was constructed via a facile assembly strategy which involves addictive negative anion citric acid mediating the intercalation of metal-citric acid chelate in mesopore of silica and subsequent thermal calcination inducing dual-metal active site formation. Such a tactic could make amorphous VOxspecies well covered on the surface of mesopore, and ultrafine copper oxide particles surrounded and neighbored by highly dispersed VOxwith strong interplay in mesopore, which was comprehensively confirmed by various characterizations. Benefiting from the unique V-Cu neighboring effect, the desorption of formed phenol over the catalytic site might be restricted therefore easily further activated by the formed reactive oxidative species, 3VCu-NS shows synergetic tandem-oxidation catalytic activities for benzene towards benzenediol with a selectivity of 57%. The result allows optimal 3VCu-NS to be a promising catalyst for benzenediol synthesis from benzene. 展开更多
关键词 CATALYSIS Molecular sieve BENZENE Synergetic effect tandem oxidation
下载PDF
Tandem catalysis for enhanced CO oxidation over the Bi-Au-SiO_(2)interface
19
作者 Huan Zhang Lei Xie +5 位作者 Zhao-Feng Liang Chao-Qin Huang Hong-Bing Wang Jin-Ping Hu Zheng Jiang Fei Song 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期198-205,共8页
Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is importan... Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is important for effective catalyst design and environmental protection.Herein,we report a Bi-Au/SiO_(2)tandem bimetallic catalyst for the oxidation of CO over the Au/SiO_(2)surface,which was monitored using near-ambient-pressure X-ray photoelectron spectroscopy.The Au-decorated SiO_(2)catalyst exhibited scarce activity in the CO oxidation reaction;however,the introduction of Bi to the Au/SiO_(2)system promoted the catalytic activity.The mechanism is thought to involve the dissociation O_(2)molecules in the presence of Bi,which results in spillover of the O species to adjacent Au atoms,thereby forming Au^(δ+).Further CO adsorption,followed by thermal treatment,facilitated the oxidation of CO at the Au-Bi interface,resulting in a reversible reversion to the neutral Au valence state.Our work provides insight into the mechanism of CO oxidation on tandem surfaces and will facilitate the rational design of other Au-based catalysts. 展开更多
关键词 APXPS CO oxidation Au-Bi interface tandem catalysis In situ
下载PDF
Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26%
20
作者 Xuzhi Hu Jiashuai Li +7 位作者 Chen Wang Hongsen Cui Yongjie Liu Shun Zhou Hongling Guan Weijun Ke Chen Tao Guojia Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期204-217,共14页
Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired ... Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired large open-circuit voltage(VOC)loss due to light-induced phase segregation and severe non-radiative recombination loss.Herein,antimony potassium tartrate(APTA)is added to perovskite precursor as a multifunctional additive that not only coordinates with unbonded lead but also inhibits the migration of halogen in perovskite,which results in suppressed non-radiative recombination,inhibited phase segregation and better band energy alignment.Therefore,a APTA auxiliary WBG PSC with a champion photoelectric conversion efficiency of 20.35%and less hysteresis is presented.They maintain 80%of their initial efficiencies under 100 mW cm^(-2)white light illumination in nitrogen after 1,000 h.Furthermore,by combining a semi-transparent WBG perovskite front cell with a narrow-bandgap tin–lead PSC,a perovskite/perovskite four-terminal tandem solar cell with an efficiency over 26%is achieved.Our work provides a feasible approach for the fabrication of efficient tandem solar cells. 展开更多
关键词 Perovskite solar cell tandem Wide bandgap Multifunctional additive
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部