The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this p...The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models.展开更多
SDGSAT-1,the world's first science satellite dedicated to assisting the United Nations 2030 Sustainable Development Agenda,has been operational for over two and a half years.It provides valuable data to aid in imp...SDGSAT-1,the world's first science satellite dedicated to assisting the United Nations 2030 Sustainable Development Agenda,has been operational for over two and a half years.It provides valuable data to aid in implementing the Sustainable Development Goals internationally.Through its Open Science Program,the satellite has maintained consistent operations and delivered free data to scientific and technological users from 88 countries.This program has produced a wealth of scientific output,with 72 papers,including 28 on data processing methods and 44 on applications for monitoring progress toward SDGs related to sustainable cities,clean energy,life underwater,climate action,and clean water and sanitation.SDGSAT-1 is equipped with three key instruments:a multispectral imager,a thermal infrared spectrometer,and a glimmer imager,which have enabled ground-breaking research in a variety of domains such as water quality analysis,identification of industrial heat sources,assessment of environmental disaster impacts,and detection of forest fires.The precise measurements and ongoing monitoring made possible by this invaluable data significantly advance our understanding of various environmental phenomena.They are essential for making well-informed decisions on a local and global scale.Beyond its application to academic research,SDGSAT-1 promotes global cooperation and strengthens developing countries'capacity to accomplish their sustainable development goals.As the satellite continues to gather and distribute data,it plays a pivotal role in developing strategies for environmental protection,disaster management and relief,and resource allocation.These initiatives highlight the satellite's vital role in fostering international collaboration and technical innovation to advance scientific knowledge and promote a sustainable future.展开更多
During the summer of 2012, the fifth CHINARE Arctic Expedition was carried out, and a submersible mooring system was deployed in M5 station located at (69°30.155'N,169°00.654'W) and recovered 50d later. ...During the summer of 2012, the fifth CHINARE Arctic Expedition was carried out, and a submersible mooring system was deployed in M5 station located at (69°30.155'N,169°00.654'W) and recovered 50d later. A set of temperature, salinity and current profile records was acquired. The characteristics of these observations are analyzed in this paper. Some main results are achieved as below. (1) Temperature generally decreases while salinity generally increases with increasing depth. The average values of all records are 2.98℃ and 32.21 psu. (2) Salinity and temperature are well negatively correlated, and the correlation coefficient between them is -0.84. However, they did not always vary synchronously. Their co-variation featured different characters during different significant periods. (3) The average velocity for the whole water column is 141 mm/s with directional angle of 347.1°. The statistical distribution curve of velocity record number gets narrower with increasing depth. More than 85% of the recorded velocities are northward, and the mean magnitudes of dominated northward velocities are 100-150 mm/s. (4) Rotary spectrum analysis shows that motions with low frequency take a majority of energy in all layers. The most significant energy peaks for all layers are around 0.012 cph (about 3.5 d period), while the tidal motion in mooring area is nonsignificant. (5) Velocities in all layers feature similar and synchronous temporal variations, except for the slight decrease in magnitude and leftward twist from top to bottom. The directions of velocity correspond well to those of Surface wind. The average northward volume transport per square meter is 0.1-0.2 m3/s under southerly wind, but about -0.2 m3/s during northerly wind burst.展开更多
During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was la...During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was launched in April 2007 to observe global ocean color and sea surface temperature, and HY-2A is an ocean dynamic environment satellite which was launched in August 2011 to obtain global marine dynamic environment parameters including sea surface height,significant wave height, ocean wind vectors, etc. Ocean observation data provided by HY-1B and HY-2A have been widely used by both domestic and international users in extensive areas such as ocean environment protection, ocean disaster prevention and reduction, marine environment forecast,ocean resource development and management, ocean investigations and scientific researches, etc.展开更多
Chang'E-1,the orbiter circling the moon 200km above the moon surface,is the first Chinese Lunar exploration satellite.The satellite was successfully launched on 24th October 2007.There are 8 kinds of scientific pa...Chang'E-1,the orbiter circling the moon 200km above the moon surface,is the first Chinese Lunar exploration satellite.The satellite was successfully launched on 24th October 2007.There are 8 kinds of scientific payloads onboard,including the stereo camera,the laser altimeter,the Sagnac-based interferometer image spectrometer,the Gamma ray spectrometer,the X-ray spectrom-eter,the microwave radiometer,the high energy particle detector,the solar wind plasma detector and a supporting payload data management system.Chang'E-1 opened her eyes to look at the moon and took the first batch of lunar pictures after her stereo camera was switched on in 20th November 2007.Henceforth all the instruments are successfully switched on one by one.After a period of parameter adjustment and initial check out,all scientific instruments are now in their normal operating phase.In this paper,the payloads and the initial observation results are introduced.展开更多
A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons an...A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).展开更多
基金funded by the China Manned Space Program (Grant Y59003AC40)TM-1 Constellation Atmospheric Density Detector (Grant E3C1162110)
文摘The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models.
文摘SDGSAT-1,the world's first science satellite dedicated to assisting the United Nations 2030 Sustainable Development Agenda,has been operational for over two and a half years.It provides valuable data to aid in implementing the Sustainable Development Goals internationally.Through its Open Science Program,the satellite has maintained consistent operations and delivered free data to scientific and technological users from 88 countries.This program has produced a wealth of scientific output,with 72 papers,including 28 on data processing methods and 44 on applications for monitoring progress toward SDGs related to sustainable cities,clean energy,life underwater,climate action,and clean water and sanitation.SDGSAT-1 is equipped with three key instruments:a multispectral imager,a thermal infrared spectrometer,and a glimmer imager,which have enabled ground-breaking research in a variety of domains such as water quality analysis,identification of industrial heat sources,assessment of environmental disaster impacts,and detection of forest fires.The precise measurements and ongoing monitoring made possible by this invaluable data significantly advance our understanding of various environmental phenomena.They are essential for making well-informed decisions on a local and global scale.Beyond its application to academic research,SDGSAT-1 promotes global cooperation and strengthens developing countries'capacity to accomplish their sustainable development goals.As the satellite continues to gather and distribute data,it plays a pivotal role in developing strategies for environmental protection,disaster management and relief,and resource allocation.These initiatives highlight the satellite's vital role in fostering international collaboration and technical innovation to advance scientific knowledge and promote a sustainable future.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programmes,State Oceanic Administration under contract Nos CHINARE2014-03-01 and CHINARE2014-04-03the Public Science and Technology Research Funds Projects of Ocean under contract No.201205007-1the Basic Research Fund under contract No.GY02-2007T08
文摘During the summer of 2012, the fifth CHINARE Arctic Expedition was carried out, and a submersible mooring system was deployed in M5 station located at (69°30.155'N,169°00.654'W) and recovered 50d later. A set of temperature, salinity and current profile records was acquired. The characteristics of these observations are analyzed in this paper. Some main results are achieved as below. (1) Temperature generally decreases while salinity generally increases with increasing depth. The average values of all records are 2.98℃ and 32.21 psu. (2) Salinity and temperature are well negatively correlated, and the correlation coefficient between them is -0.84. However, they did not always vary synchronously. Their co-variation featured different characters during different significant periods. (3) The average velocity for the whole water column is 141 mm/s with directional angle of 347.1°. The statistical distribution curve of velocity record number gets narrower with increasing depth. More than 85% of the recorded velocities are northward, and the mean magnitudes of dominated northward velocities are 100-150 mm/s. (4) Rotary spectrum analysis shows that motions with low frequency take a majority of energy in all layers. The most significant energy peaks for all layers are around 0.012 cph (about 3.5 d period), while the tidal motion in mooring area is nonsignificant. (5) Velocities in all layers feature similar and synchronous temporal variations, except for the slight decrease in magnitude and leftward twist from top to bottom. The directions of velocity correspond well to those of Surface wind. The average northward volume transport per square meter is 0.1-0.2 m3/s under southerly wind, but about -0.2 m3/s during northerly wind burst.
文摘During 2012 and 2014, China has two Haiyang(which means ocean in Chinese, referred to as HY) satellites operating normally in space which are HY-1B and HY-2A. HY-1B is an ocean color environment satellite which was launched in April 2007 to observe global ocean color and sea surface temperature, and HY-2A is an ocean dynamic environment satellite which was launched in August 2011 to obtain global marine dynamic environment parameters including sea surface height,significant wave height, ocean wind vectors, etc. Ocean observation data provided by HY-1B and HY-2A have been widely used by both domestic and international users in extensive areas such as ocean environment protection, ocean disaster prevention and reduction, marine environment forecast,ocean resource development and management, ocean investigations and scientific researches, etc.
文摘Chang'E-1,the orbiter circling the moon 200km above the moon surface,is the first Chinese Lunar exploration satellite.The satellite was successfully launched on 24th October 2007.There are 8 kinds of scientific payloads onboard,including the stereo camera,the laser altimeter,the Sagnac-based interferometer image spectrometer,the Gamma ray spectrometer,the X-ray spectrom-eter,the microwave radiometer,the high energy particle detector,the solar wind plasma detector and a supporting payload data management system.Chang'E-1 opened her eyes to look at the moon and took the first batch of lunar pictures after her stereo camera was switched on in 20th November 2007.Henceforth all the instruments are successfully switched on one by one.After a period of parameter adjustment and initial check out,all scientific instruments are now in their normal operating phase.In this paper,the payloads and the initial observation results are introduced.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402704 and2016YFC1401007the International Science and Technology Cooperation Project of China under contract No.2011DFA22260
文摘A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).