期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Micro electrical discharge machining of small hole in TC4 alloy 被引量:3
1
作者 李茂盛 迟关心 +2 位作者 王振龙 王玉魁 戴立 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期434-439,共6页
Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency a... Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency and decrease relative wear of electrode in machining deeply small hole in TC4 alloy,many factors in micro-EDM,such as polarity,electrical parameters and supplying ways of working fluid were studied.Experimental results show that positive polarity machining is far superior to negative polarity machining;it is more optimal when open-circuit voltage,pulse width and pulse interval are 130 V,5μs and 15μs respectively on the self developed multi-axis micro-EDM machine tool;when flushing method is applied in micro-EDM,the machining efficiency is higher and relative wear of electrode is smaller. 展开更多
关键词 tc4 alloy micro electrical discharge machining deeply small hole multi-axis micro-EDM machine tool
下载PDF
Influence of hot isostatic pressing on microstructure,properties and deformability of selective laser melting TC4 alloy 被引量:1
2
作者 Tai-qi Yan Bing-qing Chen +1 位作者 Xia Ji Shao-qing Guo 《China Foundry》 SCIE CAS 2021年第4期389-396,共8页
The influence of different hot isostatic pressing regimes on microstructure,phase constitution,microhardness,tensile properties and deformability of TC4 alloy fabricated by selective laser melting(SLM)technology was s... The influence of different hot isostatic pressing regimes on microstructure,phase constitution,microhardness,tensile properties and deformability of TC4 alloy fabricated by selective laser melting(SLM)technology was studied.The results show that the microstructure of SLM TC4 alloy is composed of acicular martensiteα’phase,and the sample exhibits high microhardness and strength,but low plasticity.After hot isostatic pressing,acicular martensiteα’phase transforms intoα+βphase,and with the increase of hot isostatic pressing temperature and duration,αphase with coarse lath is gradually refined,and the proportion ofαphase is gradually reduced.Because of the change of phase constitution in SLM TC4 alloy after hot isostatic pressing,the grain refinement strengthening is weakened,the density of dislocation is reduced,so that both microhardness and tensile strength are decreased by around 20%,the elongation is increased by more than about 70%,even over 100%,compared with as-deposited TC4 alloy.When the hot isostatic pressing regime is 940°C/3 h/150 MPa,the tensile strength and the elongation achieve optimal match,which are about890 MPa and around 14.0%in both directions.The fracture mechanism of alloy after 940 oC/3 h/150 MPa HIP is dultile fracture.Hot isostatic pressing causes concave deformation of SLM TC4 alloy thin-walled frames,and the deformation degree increases with the increase of temperature. 展开更多
关键词 selective laser melting tc4 alloy hot isostatic pressing MICROSTRUCTURE mechanical properties DEFORMABILITY
下载PDF
Influence of high pulsed magnetic field on tensile properties of TC4 alloy 被引量:1
3
作者 李桂荣 王芳芳 +3 位作者 王宏明 郑瑞 薛飞 程江峰 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期293-300,共8页
The tensile tests of TC4 alloy are carried on electronic universal testing machine in the synchronous presence of high pulsed magnetic field(HPMF) parallel to the axial direction.The effects of magnetic induction in... The tensile tests of TC4 alloy are carried on electronic universal testing machine in the synchronous presence of high pulsed magnetic field(HPMF) parallel to the axial direction.The effects of magnetic induction intensity(5 = 0,1 T,3 T,and 5 T) on elongation(5) of TC4 alloy are investigated.At 3 T,the elongation arrives at a maximum value of12.41%,which is enhanced by 23.98%in comparison with that of initial sample.The elongation curve shows that 3 T is a critical point.With B increasing,the volume fraction of α phase is enhanced from 49.7%to 55.9%,which demonstrates that the HPMF can induce the phase transformation from β phase to α phase.Furthermore,the magnetic field not only promotes the orientation preference of crystal plane along the slipping direction,but also has the effect on increasing the dislocation density.The dislocation density increases with the enhancement of magnetic induction intensity and the 3-T parameter is ascertained as a turning point from increase to decrease tendency.When B is larger than 3 T,the dislocation density decreases with the enhancement of B.The influence of magnetic field is analyzed on the basis of magneto-plasticity effect.The high magnetic field will enhance the dislocation strain energy and promote the state conversion of radical pair generated between the dislocation and obstacles from singlet into triplet state,in which is analyzed the phenomenon that the dislocation density is at an utmost with B = 3 T.Finally,the inevitability of optimized 3-T parameter is further discussed on a quantum scale. 展开更多
关键词 tc4 titanium alloy tensile properties MICROSTRUCTURE magneto-plasticity effect
下载PDF
Flat jet electrochemical milling of TC4 alloy with tailoring backward parallel flow
4
作者 Huanghai KONG Ningsong QU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期574-592,共19页
In flat jet electrochemical milling, the electrolyte forms a backward parallel flow after impacting the workpiece, resulting in a weak current density distribution on the workpiece. Poor surface quality usually occurs... In flat jet electrochemical milling, the electrolyte forms a backward parallel flow after impacting the workpiece, resulting in a weak current density distribution on the workpiece. Poor surface quality usually occurs on the machined titanium alloy surface because it inevitably suffers from the weak current density. In this study, a method of flat jet electrochemical milling with tailoring the backward parallel flow was proposed to eliminate the negative effects caused by the weak current density. Multiphysics simulations are carried out to comprehend the mechanism of flat jetEC milling with tailoring backward parallel flow and better construct the novel tool electrode.Experiments on flat jet electrochemical milling of TC4 alloy with and without tailoring backward parallel flow are conducted. The results reveal that, compared with flat jet electrochemical milling without tailoring backward parallel flow, the recommended tool reduces the surface roughness by86% to 93%, and improves the material removal rate by 93% to 163% with different feed rates.Additionally, the recommended tool is more conducive to maintaining the inherent hardness of the material. Finally, a surface with low Sa of 0.37 μm is obtained. 展开更多
关键词 Flat jet electrochemical milling tc4 alloy Surface roughness Micro-hardness Material removal rate
原文传递
Prediction model for flow stress during isothermal compression in α+β phase field of TC4 alloy 被引量:5
5
作者 Shun Yang Hong Li +2 位作者 Jiao Luo Yin-Gang Liu Miao-Quan Li 《Rare Metals》 SCIE EI CAS CSCD 2018年第5期369-375,共7页
Isothermal compression of TC4 alloy was performed on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1093 to 1243 K, the strain rates ranging from 0.001 to 10.000 s^-l and a maximum strain of ... Isothermal compression of TC4 alloy was performed on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1093 to 1243 K, the strain rates ranging from 0.001 to 10.000 s^-l and a maximum strain of 0.8. The experimental results show that the flow stress increases with the decrease in the deformation temperature and the increase in the strain rate. The apparent activation energy for deformation is much lower at lower strain rates than that at higher strain rates. The flow stress model considering strain compensation was established. The average relative error between the calculated flow stress and experimental results is about 7.69%, indicating that the present model could be used to accurately predict the flow stress during high temperature in α+β phase field of TC4 alloy. 展开更多
关键词 tc4 alloy Isothermal compression MODEL Flow stress
原文传递
COMPOSITION AND PROPERTY OPTIMIZATION FOR TC4 Ti ALLOY 被引量:1
6
作者 G. L. Ma, Y. H. Lu and C. Zhu 1) Northwest Institute for Nonferrous Metal Research, Baoji 721014, China 2) Baoji Nonferrous Metals Works, Baoji 721014, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期665-668,共4页
The optimization study of the compositions and properties of TC4 alloy has been conducted by using KCYH pattern recognition optimization dedicated system. Taking 92 groups of the production tesing data as the primary ... The optimization study of the compositions and properties of TC4 alloy has been conducted by using KCYH pattern recognition optimization dedicated system. Taking 92 groups of the production tesing data as the primary samples, the influence of Ti, Al, V, Fe, N H, O, C in the TC4 on 3 target values, i.e. tensil strength, yield strength and elongation has been quantitatively analysed. Based on the principle of the Pattern Recognition and other related analysing techniques, the tag extract and variable screen on the 92 groups of data have carried out to seek the optimum design area. Although these groups of data did affect the determination of the optimum area for lack of processing parameters or stability in the production procedure, by various means of the Pattern Recognition, the optimum design area for some no basic elements and the properties, which are under the national standard, has been obtained: 5.95<Al<6.315, 4.09< V<4.2, 0. 011<N<0.025, 0. 128< O<0.171. This result has a significance to guide the research and production of TC4 alloy. 展开更多
关键词 tc4 alloy pattern recognition optimum design
下载PDF
Self-propagating synthesis joining of C_(f)/Al composites and TC4 alloy using AgCu filler with Ni-Al-Zr interlayer 被引量:1
7
作者 Lei Shen Zhuo-Ran Li +3 位作者 Guang-Jie Feng Shu-Ye Zhang Zhi Zhou Peng He 《Rare Metals》 CSCD 2021年第7期1817-1824,共8页
The successful joining of carbon fiber-reinforced aluminum matrix(C_(f)/Al)composites and TC4 alloy can produce composite structure and meet the demands of lightweight in aerospace field.Up to now,few experimental res... The successful joining of carbon fiber-reinforced aluminum matrix(C_(f)/Al)composites and TC4 alloy can produce composite structure and meet the demands of lightweight in aerospace field.Up to now,few experimental researches have been reported on the joining of C_(f)/Al composites and TC4 alloy.In this study,the AgCu foils and Ni-Al-Zr compact were designed for the self-propagating high-temperature synthesis joining of these two materials.C_(f)/Al composites were joined with a reactive Ti plated on its joining surface.The typical microstructure of TC4/(AgCu/Ni-Al-Zr/AgCu)/Ti/C_(f)/Al joint was analyzed,and the effects of joining condition on microstructural evolution of the SHS joint were investigated.A thin reaction layer of Ni-Al-Ti intermetallic compounds was formed adjacent to the TC4 alloy.As a result,AgCu foils could reduce the effect of reaction heat on the substrates and improve the joint shear strength.When the thickness of AgCu foils reaches 150 lm,the Ni-Al-Zr interlayer mainly acts as auxiliary heat source.High joining pressure caused the active elements to diffuse into C_(f)/Al composites and weakened the shear strength of the joint.Finally,the joint shear strength could reach 36.4 MPa when the AgCu foils were 50 lm and the joining pressure was 2 MPa. 展开更多
关键词 Cf/Al composites tc4 alloy Self-propagating high-temperature synthesis joining MICROSTRUCTURE Shear strength
原文传递
Significance and interaction of bonding parameters with bonding ratio in press bonding of TC4 alloy 被引量:1
8
作者 Hong Li Miao-Quan Li +1 位作者 Wei-Xin Yu Hong-Bin Liu 《Rare Metals》 SCIE EI CAS CSCD 2016年第3期235-241,共7页
The variation of bonding ratio in the press bonding of TC4 alloy at temperatures from 850 to 900℃,pressures from 10 to 30 MPa,and time from 5 to 15 min was investigated.The bonding ratio increases with the increase o... The variation of bonding ratio in the press bonding of TC4 alloy at temperatures from 850 to 900℃,pressures from 10 to 30 MPa,and time from 5 to 15 min was investigated.The bonding ratio increases with the increase of temperature,time and pressure.The maximum bonding ratio,i.e.98 %,can be obtained at 900℃,30 MPa and 15 min.The significance and interaction of bonding parameters with the bonding ratio were investigated.The results demonstrate that the effect of pressure on the bonding ratio is the most effective and the effect of temperature is secondary,while the effect of time is not very powerful.The interaction of bonding parameter on the bonding ratio exists but that is distinguishing in different bonding parameter ranges.It is concluded that increasing pressure can be considered as the primary method to increase the bonding ratio. 展开更多
关键词 tc4 alloy Press bonding Orthogonal design Bonding ratio
原文传递
Microstructure and performance of dissimilar joint QCr0.8/TC4 welded by uncentered electron beam 被引量:5
9
作者 LIU Wei,ZHANG Binggang,HE Jingshan and ZHAO Haisheng State Key Laboratory of Advanced Welding Production Technology,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期344-348,共5页
The mechanical property of dissimilar metal joint between QCr0.8 and TC4 alloy made with centered electron beam is bad and the highest tensile strength of the joint is only about 82.1 MPa.The bad mechanical property i... The mechanical property of dissimilar metal joint between QCr0.8 and TC4 alloy made with centered electron beam is bad and the highest tensile strength of the joint is only about 82.1 MPa.The bad mechanical property is mainly caused by the asymmetric fusion of the two base metals and the generation of the brittle Ti-Cu intermetallic compounds.The finite element analysis shows that the amount of the melted QCr0.8 copper alloy can be added to reduce the amount of the brittle intermetallic compounds.The bias distance to the copper alloy hc has obvious effect on the tensile strength.When hc=0.8 mm,the tensile strength of the joint can reach 270.5 MPa.The reaction layer near the fusion line on the TC4 side consists of the intermetallic compound and the melted base metal which does not react.The joint fractures at the reaction layer and presents quasi-cleavage or transcrystalline rupture in tensile tests. 展开更多
关键词 QCr0.8 copper alloy tc4 alloy uncentered electron beam welding
下载PDF
Investigations of microstructures and properties in electron beam welded joints of TiAl to TC4 被引量:1
10
作者 陈国庆 何景山 +1 位作者 张秉刚 冯吉才 《China Welding》 EI CAS 2007年第3期10-13,共4页
The normally centered electron beam and non-centered electron beam welding of TiAl to TC4 was investigated in order to analyze the electron beam weldability between TiAl/TC4 dissimilar materials. Macroscopic cold crac... The normally centered electron beam and non-centered electron beam welding of TiAl to TC4 was investigated in order to analyze the electron beam weldability between TiAl/TC4 dissimilar materials. Macroscopic cold crack easily occurred near TiAl substrate in the joints. The optimal tensile strength was related to the welding heat input. The weld structures were composed of bulky columnar grains and equiaxed grains. The isolated phases consisted of large quantities of α2 -Ti3Al phase, small quantity of B2 phase, γ-TiAl phase and YAl2 phase. Insufficient melting of the base metal occurred in the weld when the beam position leaned to the TC4 side. The tensile strength could be improved when the deflection was limited in the optimum range. Otherwise, non-fusion zone was easily generated in the weld, which led to the low tensile strength. 展开更多
关键词 TiAl intermetallie compound tc4 alloy electron beam welding non-centered welding
下载PDF
Weld shape and microstructure of TC4 laser welding with activating flux of Na_(2)SiF_(6) 被引量:3
11
作者 侯继军 董俊慧 +2 位作者 白雪宇 韩旭 杨虎 《China Welding》 CAS 2020年第4期19-24,共6页
Na_(2)SiF_(6) was used as surface activating flux for laser welding of TC4 titanium alloy. The effect of Na_(2)SiF_(6) on TC4 titanium alloy laser welding was determined by observing the weld surface. The morphologica... Na_(2)SiF_(6) was used as surface activating flux for laser welding of TC4 titanium alloy. The effect of Na_(2)SiF_(6) on TC4 titanium alloy laser welding was determined by observing the weld surface. The morphological characteristics of the high temperature plasma above the workpiece was observed and analyzed by using high-speed digital camera system. The variation of weld depth,width and microstructure were analyzed by optical microscope. The experimental results show that laser weld of TC4 titanium alloy has good appearance with activating flux of Na_(2)SiF_(6), weld penetration increases by about 0.8%–12%, while weld surface width decrease by about 10%–29%, the depth to width ratio is effectively improved. The inhomogeneity of weld microstructure was improved, and the crystallization direction of β columnar crystals on the upper part of the weld was changed, the grain size and microstructure of the weld were refined by Na_(2)SiF_(6). 展开更多
关键词 Na_(2)SiF_(6) tc4 titanium alloy PLASMA weld shape MICROSTRUCTURE
下载PDF
A comparative study of surface characterization and corrosion behavior of micro-arc oxidation treated Ti-6Al-4V alloy prepared by SEBM and SLM 被引量:1
12
作者 Qing-bo Yan Tong Xue +5 位作者 Shi-feng Liu Wan-lin Wang Yan Wang Xi Song Xin Yang Wei-wei Shang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第1期165-175,共11页
Additively manufactured Ti-6Al-4V(TC4)parts have been successfully employed as artificial implants in dental and orthopedic surgery due to their excellent mechanical properties.However,the suboptimal corrosion resista... Additively manufactured Ti-6Al-4V(TC4)parts have been successfully employed as artificial implants in dental and orthopedic surgery due to their excellent mechanical properties.However,the suboptimal corrosion resistance limits their applications.The surface characterization and corrosion behavior of micro-arc oxidation(MAO)treated TC4 alloy prepared by selective electron beam melting(SEBM)and selective laser melting(SLM)technologies were compared.The corrosion resistance mechanism of SLM-MAO and SEBM-MAO was clarified through the analysis of the microstructure evolution,surface morphology,and electrochemical experiments.The results show that the anatase-type TiO_(2) is partially transformed into the slankite phase after MAO treatment.The surface roughness of SEBM sample was reduced by MAO coating,while the surface roughness of SLM sample increased after MAO,which is related to the difference between the microstructure of the deposited samples caused by different additive manufacturing technologies.When MAO time was 15 min,SLM-MAO and SEBM-MAO coating displayed the best and the worst corrosion resistance,respectively. 展开更多
关键词 tc4 alloy Selective laser melting Selective electron beam melting Micro-arc oxidation Corrosion resistance
原文传递
Experimental Study on Grinding Force of Electrostatic Coated Grinding Wheel
13
作者 霍文国 田青松 邵娟 《Journal of Donghua University(English Edition)》 CAS 2022年第1期35-39,共5页
In order to deal with the hard machining of TC4 alloy,coated graphite on grinding wheel surface by electrostatic device is proposed in this paper.This paper mainly completed the design of graphite electrostatic sprayi... In order to deal with the hard machining of TC4 alloy,coated graphite on grinding wheel surface by electrostatic device is proposed in this paper.This paper mainly completed the design of graphite electrostatic spraying grinding wheel device,force experimental analysis of grinding TC4 alloy with coated graphite grinding wheel,and summary of the influence of different grinding speeds and grinding depths on grinding force and grinding force ratio.The experimental results show that the lubrication coating can reduce the grinding force and grinding force ratio in the process of grinding TC4 alloy with graphite powder-coated wheel under electrostatic field force,compared to dry grinding with the uncoated wheel. 展开更多
关键词 electrostatic spraying solid lubrication coated lubricant WHEEL grinding force tc4 alloy
下载PDF
Improving performance of macro electrolyte jet machining of TC4 titanium alloy:Experimental and numerical studies
14
作者 Minglu WANG Ningsong QU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期280-294,共15页
Electrolyte jet machining(EJM)is a promising method for shaping titanium alloys due to its lack of tool wear,thermal and residual stress,and cracks and burrs.Recently,macro-EJM has attracted increasing attention for i... Electrolyte jet machining(EJM)is a promising method for shaping titanium alloys due to its lack of tool wear,thermal and residual stress,and cracks and burrs.Recently,macro-EJM has attracted increasing attention for its high efficiency in machining wide grooves or planes.However,macro-EJM generates large amounts of electrolytic products,thereby increasing the difficulty of rapid product removal with a standard tool and reducing the surface quality.Therefore,for enhanced product transport,a novel tool with a back inclined end face was proposed for macroEJM of TC4 titanium alloy.For comparison,also proposed were ones with a standard flat end face,a front inclined end face,and both front and back inclined end faces.The flow field distributions of all proposed tools were simulated numerically,and experiments were also conducted to validate the simulation results.The results show that one with a 5°back inclined end face can decrease the lowvelocity flow zone in the machining area and increase the high-velocity flow zone at the back end of tool,thereby promoting rapid product removal.A relatively smooth bright-white groove surface was obtained.The same tool also resulted in the highest machining depth and material removal rate among the tested ones.In addition,rapid product removal was beneficial to the subsequent processing.Because of its rapid product removal,the machining depth and material removal rate during deep groove machining using the tool with a 5°back inclined end face were respectively 7%and14%higher than those produced using a standard one.Moreover,the lowest bottom height difference of 0.027 mm can be obtained when the step-over value was 8.2 mm,and a plane with a depth of0.285 mm and a bottom height difference of 0.03 mm was fabricated using the tool with a 5°back inclined end face. 展开更多
关键词 Electrochemical machining Macro electrolyte jet machining Product removal tc4 titanium alloy Tool end structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部