期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
温度限制串联相关神经网络及其在细菌辨识中的应用 被引量:4
1
作者 张卓勇 Aaron Urbas +2 位作者 Peter de B Harrington Kent J.Voorhees Jon Rees 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2002年第4期570-572,共3页
蛋白质在微生物研究中可用作生物标记物, 故在生物技术中其表征工作很重要. 各种质谱技术已被用于细菌的表征[1~3]. 1994年, Cain等[4]首先报道了将色谱和基体辅助激光解离/电离飞行时间质谱(MALDI-TOF-MS)用于细菌的辨识. Holland等[5... 蛋白质在微生物研究中可用作生物标记物, 故在生物技术中其表征工作很重要. 各种质谱技术已被用于细菌的表征[1~3]. 1994年, Cain等[4]首先报道了将色谱和基体辅助激光解离/电离飞行时间质谱(MALDI-TOF-MS)用于细菌的辨识. Holland等[5]采用高质量离子MALDI-TOF-MS对细菌全细胞进行辨识. 最近, Lay[6]对该技术的细菌辨识做了综述. MALDI-TOF-MS是目前对细菌全细胞分析的最佳手段. 展开更多
关键词 细菌 MALDI 飞行时间质谱 tcccn 人工神经网络 辨识 温度限制串联相关神经网络
下载PDF
Application of Density Functional Theoretic Descriptors to Quantitative Structure-Activity Relationships with Temperature Constrained Cascade Correlation Network Models of Nitrobenzene Derivatives
2
作者 CUI Xiu-jun ZHANG Zhuo-yong +4 位作者 YUAN Xing ZHANG Jing-ping LIU Si-dong GUO Li-ping Peter de B. HARRINGTON 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第4期439-442,共4页
A temperature-constrained cascade correlation network (TCCCN), a back-propagation neural network (BP), and multiple linear regression(MLR) models were applied to quantitative structure-activity relationship(QSA... A temperature-constrained cascade correlation network (TCCCN), a back-propagation neural network (BP), and multiple linear regression(MLR) models were applied to quantitative structure-activity relationship(QSAR) modeling, on the basis of a set of 35 nitrobenzene derivatives and their acute toxicities. These structural quantum-chemical descriptors were obtained from the density functional theory(DFT). Stepwise multiple regression analysis was performed and the model was obtained. The value of the calibration correlation coefficient R is 0. 925, and the value of cross-validation correlation coefficient R is 0. 87. The standard error S = 0. 308 and the cross-validated ( leave-one- out) standard error Scv =0. 381. Principal component analysis(PCA) was carried out for parameter selection. RMS errors for training set via TCCCN and BP are 0. 067 and 0. 095, respectively, and RMS errors for testing set via TCCCN and BP are 0. 090 and 0. 111, respectively. The results show that TCCCN performs better than BP and MLR. 展开更多
关键词 DFT MLR PCA BP tcccn QSAR Nitrobenzene derivative
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部