To understand website complexity deeply, a web page complexity measurement system is developed. The system measures the complexity of a web page at two levels: transport-level and content-level, using a packet trace-...To understand website complexity deeply, a web page complexity measurement system is developed. The system measures the complexity of a web page at two levels: transport-level and content-level, using a packet trace-based approach rather than server or client logs. Packet traces surpass others in the amount of information contained. Quantitative analyses show that different categories of web pages have different complexity characteristics. Experimental results show that a news web page usually loads much more elements at more accessing levels from much more web servers within diverse administrative domains over much more concurrent transmission control protocol (TCP) flows. About more than half of education pages each only involve a few logical servers, where most of elements of a web page are fetched only from one or two logical servers. The number of content types for web game traffic after login is usually least. The system can help web page designers to design more efficient web pages, and help researchers or Internet users to know communication details.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper ...It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router’s stability and response time, which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.展开更多
Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detecti...Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. In this article, an approach is presented for online traffic classification relying on the observation of the first n packets of a transmission control protocol (TCP) connection. Its key idea is to utilize the properties of the observed first ten packets of a TCP connection and Bayesian network method to build a classifier. This classifier can classify TCP flows dynamically as packets pass through it by deciding whether a TCP flow belongs to a given application. The experimental results show that the proposed approach performs well in online Internet traffic classification and that it is superior to naive Bayesian method.展开更多
Analyses of dynamic systems with random oscillations need to calculate the system covariance matrix, but this is not easy even in the linear case if the random term is not a Gaussian white noise. A universal method is...Analyses of dynamic systems with random oscillations need to calculate the system covariance matrix, but this is not easy even in the linear case if the random term is not a Gaussian white noise. A universal method is developed here to handle both Gaussian and compound Poisson white noise. The quadratic variations are analyzed to transform the problem into a Lyapunov matrix differential equation. Explicit formulas are then derived by vectorization. These formulas are applied to a simple model of flows and queuing in a computer network. A stability analysis of the mean value illustrates the effects of oscillations in a real system. The relationships between the oscillations and the parameters are clearly presented to improve designs of real systems.展开更多
基金supported by the Open Research Program of the Key Laboratory of Computer Network and Information Integration(Southeast University),Ministry of Education(K93-9-2014-04B)the National Natural Science Foundation of China(61170322,61572263,61302157)
文摘To understand website complexity deeply, a web page complexity measurement system is developed. The system measures the complexity of a web page at two levels: transport-level and content-level, using a packet trace-based approach rather than server or client logs. Packet traces surpass others in the amount of information contained. Quantitative analyses show that different categories of web pages have different complexity characteristics. Experimental results show that a news web page usually loads much more elements at more accessing levels from much more web servers within diverse administrative domains over much more concurrent transmission control protocol (TCP) flows. About more than half of education pages each only involve a few logical servers, where most of elements of a web page are fetched only from one or two logical servers. The number of content types for web game traffic after login is usually least. The system can help web page designers to design more efficient web pages, and help researchers or Internet users to know communication details.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
文摘It was shown that active queue management schemes implemented in the routers of communication networks sup-porting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router’s stability and response time, which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.
基金supported by the National Basic Research Program of China(2007CB310705)the Hi-Tech Research and Development Program of China(2007AA01Z255)+2 种基金the National Natural Science Foundation of China(60711140087)PCSIRT(IRT0609)ISTCP(2006DFA 11040) of China
文摘Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. In this article, an approach is presented for online traffic classification relying on the observation of the first n packets of a transmission control protocol (TCP) connection. Its key idea is to utilize the properties of the observed first ten packets of a TCP connection and Bayesian network method to build a classifier. This classifier can classify TCP flows dynamically as packets pass through it by deciding whether a TCP flow belongs to a given application. The experimental results show that the proposed approach performs well in online Internet traffic classification and that it is superior to naive Bayesian method.
基金Supported by the National Natural Science Foundation of China(Nos. 60674048,60772053, 60672142,and 60932005)the National Key Basic Research and Development (973) Program of China (Nos.2007CB307100 and 2007CB307105)
文摘Analyses of dynamic systems with random oscillations need to calculate the system covariance matrix, but this is not easy even in the linear case if the random term is not a Gaussian white noise. A universal method is developed here to handle both Gaussian and compound Poisson white noise. The quadratic variations are analyzed to transform the problem into a Lyapunov matrix differential equation. Explicit formulas are then derived by vectorization. These formulas are applied to a simple model of flows and queuing in a computer network. A stability analysis of the mean value illustrates the effects of oscillations in a real system. The relationships between the oscillations and the parameters are clearly presented to improve designs of real systems.