The precipitation of topologically close-packed(TCP)phases is the result of microstructure instabilities of Ni-based superalloys.This review seeks to comprehensively collate all the available information on TCP phases...The precipitation of topologically close-packed(TCP)phases is the result of microstructure instabilities of Ni-based superalloys.This review seeks to comprehensively collate all the available information on TCP phases in SX superalloys based on the latest findings.First,the thermodynamics and kinetics of the TCP phase precipitation are introduced.Meanwhile,the morphology,composition and orientation of TCP phases and their sequential transformation are summarized in detail.Further,the factors affecting the precipitation of these phases are sorted out.Besides,the proposed damage mechanisms of TCP phases are listed.Finally,several control and prediction methods of the TCP phase precipitation are reviewed,so the alloy designer can better balance the relationship between microstructure stabilities and properties of the superalloy.展开更多
The application and component designs of single crystal superalloys are restricted by the precipitation of topologically closed packed(TCP)phases,which can deteriorate the microstructural stability of the alloys sever...The application and component designs of single crystal superalloys are restricted by the precipitation of topologically closed packed(TCP)phases,which can deteriorate the microstructural stability of the alloys severely.Limited researches concerning the type and morphology evolution of TCP phases under elevated temperature conditions have been reported previously.In the present work,three Re-containing single crystal alloys were designed to investigate TCP phase evolution via long term isothermal exposure tests at 1120℃while the effects of Re on the microstructural characteristic and elements segregation were also clarified.The results showed that the addition of Re increased the instability of the alloys and the volume fraction of the TCP phases exceeded 5 vol%when the Re content reached 3 wt%.The increasing Re content had also raised the precipitation temperature of TCP phases but it did not change the type of them after long term aging;all the TCP particles were identified asμphase in this study.Moreover,the elements segregation became considerably serious as Re addition increased constantly,which brought about various morphologies of theμphase in the experimental alloys.In particular,the rod-like and needle-likeμphases demonstrated the typical orientation withinγmatrix while the blockyμphase was dispersedly distributed in the space.No specific orientation relationship could be observed in theμphase when the addition of Re exceeded certain threshold value.展开更多
基金financially supported by the National Science and Technology Major Project(No.2019-VII-0019-0161)Science Center for Gas Turbine Project(No.P2021-A-Ⅳ-001-002)+1 种基金National Key Research and Development Program of China under Grant(No.2017YFA0700704)National Natural Science Foundation of China(No.51971214).
文摘The precipitation of topologically close-packed(TCP)phases is the result of microstructure instabilities of Ni-based superalloys.This review seeks to comprehensively collate all the available information on TCP phases in SX superalloys based on the latest findings.First,the thermodynamics and kinetics of the TCP phase precipitation are introduced.Meanwhile,the morphology,composition and orientation of TCP phases and their sequential transformation are summarized in detail.Further,the factors affecting the precipitation of these phases are sorted out.Besides,the proposed damage mechanisms of TCP phases are listed.Finally,several control and prediction methods of the TCP phase precipitation are reviewed,so the alloy designer can better balance the relationship between microstructure stabilities and properties of the superalloy.
基金financially supported by the State Key Lab of Advanced Metals and Materials Open Fund under Grant No.2018-Z07the National Science and Technology Major Project under Grant No.2017-VI-0002-0072+2 种基金the National Key R&D Program of China under Grant No.2017YFA0700704the National Natural Science Foundation of China(NSFC)under Grant Nos.51601192,51671188the Youth Innovation Promotion Association,Chinese Academy of Sciences
文摘The application and component designs of single crystal superalloys are restricted by the precipitation of topologically closed packed(TCP)phases,which can deteriorate the microstructural stability of the alloys severely.Limited researches concerning the type and morphology evolution of TCP phases under elevated temperature conditions have been reported previously.In the present work,three Re-containing single crystal alloys were designed to investigate TCP phase evolution via long term isothermal exposure tests at 1120℃while the effects of Re on the microstructural characteristic and elements segregation were also clarified.The results showed that the addition of Re increased the instability of the alloys and the volume fraction of the TCP phases exceeded 5 vol%when the Re content reached 3 wt%.The increasing Re content had also raised the precipitation temperature of TCP phases but it did not change the type of them after long term aging;all the TCP particles were identified asμphase in this study.Moreover,the elements segregation became considerably serious as Re addition increased constantly,which brought about various morphologies of theμphase in the experimental alloys.In particular,the rod-like and needle-likeμphases demonstrated the typical orientation withinγmatrix while the blockyμphase was dispersedly distributed in the space.No specific orientation relationship could be observed in theμphase when the addition of Re exceeded certain threshold value.