介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联...介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联发射结电压和低失调运算放大器的PTAT电流产生器,实现了高精度的PTAT电流;采用具有负温度系数的电阻,补偿了VBE的高阶温度特性;采用共源共栅结构,提高了输出电压的电源抑制。后仿真结果表明,当电源电压为3.3 V,温度范围为-40~85℃时,温度传感器的输出电压范围为0.964~1.490V,输出电压的斜率范围为-4.245×10-3^-4.160×10-3,斜率变化范围为8.5×10-5,表明该温度传感器具有非常高的线性度。展开更多
文摘介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联发射结电压和低失调运算放大器的PTAT电流产生器,实现了高精度的PTAT电流;采用具有负温度系数的电阻,补偿了VBE的高阶温度特性;采用共源共栅结构,提高了输出电压的电源抑制。后仿真结果表明,当电源电压为3.3 V,温度范围为-40~85℃时,温度传感器的输出电压范围为0.964~1.490V,输出电压的斜率范围为-4.245×10-3^-4.160×10-3,斜率变化范围为8.5×10-5,表明该温度传感器具有非常高的线性度。
文摘基于Bi CMOS工艺设计低温漂、高电源抑制比的自偏置带隙基准电压源及过温保护复合电路。带隙基准采用自偏置电流源和差分运放一体化结构,过温保护电路用NPN管采集电流大小实现振荡器的起振或关断。仿真结果表明:带隙恒为1.24 V,温度在-40℃到125℃变化时,输出变化不超过0.78 m V,复合电路电源抑制比高达95 d B;超温关断时间0.071 s,迟滞开启时间0.064 s,复合电路能为TCXO芯片提供稳定的基准参考和较好的过温保护效果,有很大的实用价值。