Benzothiazole (BTH) and its derivatives are organic molecules with biologic actions. Because of their many applications, they are produced on a massive scale and used in a number of environmental compartments. Their d...Benzothiazole (BTH) and its derivatives are organic molecules with biologic actions. Because of their many applications, they are produced on a massive scale and used in a number of environmental compartments. Their discharge into water produces environmental problems, exposing our environment to public health problems. A solution that can contribute to their deterioration is becoming a necessity. For this reason, a conceptual analysis of the reactivity of benzothiazole and four of its compounds was undertaken in order to investigate certain aspects of their biodegradability. A theoretical investigations of the compounds studied were conducted in the gas and water phases with the most widely used density functional theory method, Becke-3-Parameter-Lee-Yang-Parr (B3LYP) with 6-31G+ (d, p) basis. Reactivity study calculated global indices of reactivity revealed that 2-SCH3_BTH is the most reactive. Dipole moment values analysis reveals that 2-NH2_BTH is the most soluble in water, while the lipophilicity shows that 2-NH2_BTH is the most hydrophilic compound. Thermodynamic parameters values reflect that reactions are respectively exothermic and spontaneous. By analyzing an Electrostatic Molecular Potential (EMP) map, researchers can pinpoint reactive sites on a molecule and anticipate its reactivity. This assessment is further enhanced by incorporating global and local reactivity descriptors. Additionally, an exploration of frontier molecular orbitals offers valuable insights into the molecule’s charge transfer characteristics. Moreover, a combined examination of internal and external molecular interactions unveils hyperconjugative interactions arising from charge delocalization, as elucidated through natural bond orbital (NBO) analysis.展开更多
Electronic structures and absorption spectra properties of complex 8-((trimethoxysilyl)methylthio)quinoline.SnCh in gas phase and MeCN media have been investigated by using DFT/TD-DFT method. The calculated lowest...Electronic structures and absorption spectra properties of complex 8-((trimethoxysilyl)methylthio)quinoline.SnCh in gas phase and MeCN media have been investigated by using DFT/TD-DFT method. The calculated lowest-energy absorption band shows different mechanisms under these two conditions, and it bears LMCT/LLCT/ILCT character in MeCN solution and LLCT/ILCT character in gas phase. The calculated absorption bands of the title complex in MeCN solvent are in good agreement with the experimental results, and calculation results indicate that the very weak experimentally observed lowest-energy absorption band of the title complex in MeCN solvent originates from the spin-forbidden singlet-triplet transitions.展开更多
Ground state geometries, spectral (IR and UV-Vis) properties, analysis of frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and molecular electrostatic potential (MEP) surfaces of three transitio...Ground state geometries, spectral (IR and UV-Vis) properties, analysis of frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and molecular electrostatic potential (MEP) surfaces of three transition metal complexes [Cu(AOYP)2(OH2)2] (A), [Ni(AOYP)2(OH2)2] (B) and [Zn-(AOYP)2(OH2)2] (C), have been studied theoretically by the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods. AOYP is the oxadiazole ligand 2-(5-amino-[1,3,4]-oxadiazol-2-yl)phenol. The geometries of these complexes were initially optimized using two basis sets: LAN2DZ and a generic basis set, the latter of which was selected for subsequent analysis. The stability of the complexes arising from intramolecular interactions and electron delocalization was estimated by natural bond orbital (NBO) analysis. The NBO results showed significant charge transfer from lone pair orbitals on the AOYP donor atoms O19, O21, N15 and N36 to central metal ions in the complexes, as well as to the benzene and oxadiazole rings. The electronic spectrum of (A) showed bands at 752 and 550 nm mainly attributable to ligand-to-metal charge transfer (LMCT) transitions, and a band at 446 nm assigned to a d-d transition. The electronic spectrum of (B) consisted of bands at 540, 463 and 395 nm mainly due to d-d transitions. Calculated electronic bands for (C) occurred at 243, 238 and 235 nm, arising from intraligand charge transfer (ILCT) transitions within AOYP. A good agreement in terms of band positions was found between experimental and calculated absorption spectra of the complexes.展开更多
The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet...The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet excited state for 2,7'-(ethylene)-bis-8-hydroxyqulnoline and its derivatives were optimized by CIS/6-31G(d). The absorption and emission spectra based on the above structures were obtained by the time-dependent density functional theory (TD-DFT) by the B3LYP method with the 6-31G(d) basis set. The calculated results of luminescence originate from the electronic transition from the hydroxphenol ring of 8-hydroxyquinoline A to the pyridine ring of 8-hydroxyquinoline B. Their luminescence wave bands can be tuned by different substituents on the ligand of 8-hydroxyquinoline.展开更多
The molecular structures of ground state and first single excited state for pyrazoline derivatives are optimized with DFT B3LYP method and ab initio “configuration interaction with single excitations”(CIS) method,...The molecular structures of ground state and first single excited state for pyrazoline derivatives are optimized with DFT B3LYP method and ab initio “configuration interaction with single excitations”(CIS) method, respectively. The frontier molecular orbital characteristics have been analyzed systematically, and the electronic transition mechanism has been discussed. Electronic spectra are calculated by using TD-DFT method. These results are consistent with those from the experiment.展开更多
Based on density functional theory(DFT) and time-dependent density functional theory(TD-DFT), the effects of substituent on the excited-state intramolecular proton transfer(ESIPT) process and photophysical properties ...Based on density functional theory(DFT) and time-dependent density functional theory(TD-DFT), the effects of substituent on the excited-state intramolecular proton transfer(ESIPT) process and photophysical properties of 2-(2’-hydroxyphenyl)-4-chloromethylthiazole(HCT) are studied. The electron-donating group(CH_(3), OH) and electronwithdrawing group(CF_(3), CHO) are introduced to analyze the changes of intramolecular H-bond, the frontier molecular orbitals, the absorption/fluorescence spectra, and the energy barrier of ESIPT process. The calculation results indicate that electron-donating group strengthens the intramolecular H-bond in the S_(1) state, and leads to an easier ESIPT process. The electron-withdrawing group weakens the corresponding H-bond and makes ESIPT process a little harder. Different substituents also affect the photophysical properties of HCT. The electron-withdrawing group(CF_(3), CHO) has a little effect on electronic spectra. The electron-donating group(CH_(3), OH) red-shifts both the absorption and fluorescence emission peaks of HCT, respectively, which causes the Stokes shift to increase.展开更多
Yttrium(Ⅲ)oxide or so-called diyttrium trioxide(Y_2O_3)is an excellent candidate ceramic material for optoelectronic applications.Structural,electrical conductivity,and dielectric relaxation properties of bulk yttri...Yttrium(Ⅲ)oxide or so-called diyttrium trioxide(Y_2O_3)is an excellent candidate ceramic material for optoelectronic applications.Structural,electrical conductivity,and dielectric relaxation properties of bulk yttrium(Ⅲ)oxide were studied.X-ray diffraction(XRD)results indicate that the yttrium(Ⅲ)oxide compound has a crystalline cubic phase.Fourier transform infrared(FTIR)technique was used to ascertain the chemical structure of the yttrium(Ⅲ)oxide compound.Impedance spectroscopy was used to analyze frequency-dependent electrical properties as a function of temperature in the range of 303-423 K and frequency range of 0.1 Hz-2 MHz.Impedance spectroscopy parameters such as dielectric constant,dielectric loss,loss factor,electric modulus,and complex impedance of the yttrium(Ⅲ)oxide compound were studied.The Nyquist plot describes the complex impedance of the yttrium(Ⅲ)oxide for different temperatures.The universal Jonscher's power law was used for the analysis of the complex electrical conductivity of the yttrium(Ⅲ)oxide compound.It is found that the real(σ')and imaginary(σ")parts of the complex conductivity increase with increasing frequency.The exponent frequency(s)equals unity,which confirms that the predominant conduction mechanism is a nearly constant loss(NCL)mechanism.DFT/TD-DFT studies using B3LYP/LanL2DZ level of theory were used to provide comparable theoretical data and electronic energy gap of HOMO→LUMO.展开更多
This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applicati...This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy.展开更多
We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-l), determined by the time dependent-density functional theory(TD-DFT) approach....We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-l), determined by the time dependent-density functional theory(TD-DFT) approach. The analysis is based on a direct comparison with the highly correlated CASSCF(MS-CASPT2) ab initio approach. 49 DFT functionals were considered and applied to the study. Among the tested functionals, mPW3PBE, B3PW91 and B3P86 give the best performance for ground-state geometry, absorption spectrum, excited-state geometry and emis- sion spectrum.展开更多
The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and ph...The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be "from fragments to molecule" (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.展开更多
In this study,linear absorption,single-photon excited fluorescence,fluorescence quantum yields,fluorescence lifetime and two-photon excited fluorescence of a series of triphenylamine derivatives (L1,L2,L3 and L4) have...In this study,linear absorption,single-photon excited fluorescence,fluorescence quantum yields,fluorescence lifetime and two-photon excited fluorescence of a series of triphenylamine derivatives (L1,L2,L3 and L4) have been measured.L1 and L3 are D--A type dyes,while L2 and L4 are D--D--A type dyes (D=donor,A=acceptor).The investigated compounds consist of triphenylamine-bearing donor-substituted and/or systematically extended-conjugated length,which are designed to gain insight into the effect of the ethoxyl unit and-linkage length on the linear and nonlinear optical properties.The influence of solvent polarity on the photophysical properties was investigated.Employing time-dependent density functional theory (TD-DFT) calculations,the structure-property relationships are discussed.展开更多
Pyrene is one of significant fluorescent material and its fluorescence properties are excellent.It has been widely used for such as OLEDs,DSCs,LMOGs and so on[1-5].What's more,pyrene has been successfully applied to ...Pyrene is one of significant fluorescent material and its fluorescence properties are excellent.It has been widely used for such as OLEDs,DSCs,LMOGs and so on[1-5].What's more,pyrene has been successfully applied to signaling the presence of metal ions,nucleic acids,proteins and so on[6-9].Thus,the development of the fluorescent dyes based on pyrene has been a research focus[10-12].However,the synthesis of many pyrene derivatives needed the high-cost coupling reaction such as Heck reaction and Suzuki reaction[1-3,10-12].展开更多
The molecular structures of the ground and the lowest triplet states for a series of Pt(ll) complexes PtLCl(l)[L=6-(2-hydroxyphenyl)-2,2'-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyClz...The molecular structures of the ground and the lowest triplet states for a series of Pt(ll) complexes PtLCl(l)[L=6-(2-hydroxyphenyl)-2,2'-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyClz(bpy=2,2'- bipyridine)(3), and the free tridentate L ligand(4) were optimized by the density functional theory B3LYP and UB3LYP methods, respectively. On the basis of optimized geometries, the spectral properties were investigated with time-dependent density functional theory(TD-DFT). In comparison with those of complexes 2 and 3, the more rigid structure of complex 1 together with its low rate of the radiationless decay via nonemissive d-d state leads to higher photoluminescence quantum efficiency. And the phosphorescence quantum efficiency of complex 1 can be easily controlled by modifying auxiliary ligands. The introduction of fluorine ligand into complexes can effectively increase the radiation transition rate and decrease the radiationless d-d transition rate, and as a result, a novel complex PtLF(5) might be a good phosphorescent material suitable for organic electronic devices.展开更多
文摘Benzothiazole (BTH) and its derivatives are organic molecules with biologic actions. Because of their many applications, they are produced on a massive scale and used in a number of environmental compartments. Their discharge into water produces environmental problems, exposing our environment to public health problems. A solution that can contribute to their deterioration is becoming a necessity. For this reason, a conceptual analysis of the reactivity of benzothiazole and four of its compounds was undertaken in order to investigate certain aspects of their biodegradability. A theoretical investigations of the compounds studied were conducted in the gas and water phases with the most widely used density functional theory method, Becke-3-Parameter-Lee-Yang-Parr (B3LYP) with 6-31G+ (d, p) basis. Reactivity study calculated global indices of reactivity revealed that 2-SCH3_BTH is the most reactive. Dipole moment values analysis reveals that 2-NH2_BTH is the most soluble in water, while the lipophilicity shows that 2-NH2_BTH is the most hydrophilic compound. Thermodynamic parameters values reflect that reactions are respectively exothermic and spontaneous. By analyzing an Electrostatic Molecular Potential (EMP) map, researchers can pinpoint reactive sites on a molecule and anticipate its reactivity. This assessment is further enhanced by incorporating global and local reactivity descriptors. Additionally, an exploration of frontier molecular orbitals offers valuable insights into the molecule’s charge transfer characteristics. Moreover, a combined examination of internal and external molecular interactions unveils hyperconjugative interactions arising from charge delocalization, as elucidated through natural bond orbital (NBO) analysis.
基金Supported by the National Natural Science Foundation of China (Nos. 20473055 and 20773089)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 20071108-18-15)
文摘Electronic structures and absorption spectra properties of complex 8-((trimethoxysilyl)methylthio)quinoline.SnCh in gas phase and MeCN media have been investigated by using DFT/TD-DFT method. The calculated lowest-energy absorption band shows different mechanisms under these two conditions, and it bears LMCT/LLCT/ILCT character in MeCN solution and LLCT/ILCT character in gas phase. The calculated absorption bands of the title complex in MeCN solvent are in good agreement with the experimental results, and calculation results indicate that the very weak experimentally observed lowest-energy absorption band of the title complex in MeCN solvent originates from the spin-forbidden singlet-triplet transitions.
文摘Ground state geometries, spectral (IR and UV-Vis) properties, analysis of frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and molecular electrostatic potential (MEP) surfaces of three transition metal complexes [Cu(AOYP)2(OH2)2] (A), [Ni(AOYP)2(OH2)2] (B) and [Zn-(AOYP)2(OH2)2] (C), have been studied theoretically by the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods. AOYP is the oxadiazole ligand 2-(5-amino-[1,3,4]-oxadiazol-2-yl)phenol. The geometries of these complexes were initially optimized using two basis sets: LAN2DZ and a generic basis set, the latter of which was selected for subsequent analysis. The stability of the complexes arising from intramolecular interactions and electron delocalization was estimated by natural bond orbital (NBO) analysis. The NBO results showed significant charge transfer from lone pair orbitals on the AOYP donor atoms O19, O21, N15 and N36 to central metal ions in the complexes, as well as to the benzene and oxadiazole rings. The electronic spectrum of (A) showed bands at 752 and 550 nm mainly attributable to ligand-to-metal charge transfer (LMCT) transitions, and a band at 446 nm assigned to a d-d transition. The electronic spectrum of (B) consisted of bands at 540, 463 and 395 nm mainly due to d-d transitions. Calculated electronic bands for (C) occurred at 243, 238 and 235 nm, arising from intraligand charge transfer (ILCT) transitions within AOYP. A good agreement in terms of band positions was found between experimental and calculated absorption spectra of the complexes.
基金Supported by the Foundation of Education Committee of Gansu Province (No. 0708-11)foundation of Tianshui Normal University (No. TSA0604)
文摘The structures of 2,7'-(ethylene)-bis-8-hydroxyquinoline and its derivatives were optimized at the ground states using ab initio HF and B3LYP methods. At the same time, the molecular structures of the first singlet excited state for 2,7'-(ethylene)-bis-8-hydroxyqulnoline and its derivatives were optimized by CIS/6-31G(d). The absorption and emission spectra based on the above structures were obtained by the time-dependent density functional theory (TD-DFT) by the B3LYP method with the 6-31G(d) basis set. The calculated results of luminescence originate from the electronic transition from the hydroxphenol ring of 8-hydroxyquinoline A to the pyridine ring of 8-hydroxyquinoline B. Their luminescence wave bands can be tuned by different substituents on the ligand of 8-hydroxyquinoline.
基金Supported by Anhui university scientific finance fund for distinguished young scholar (2004jq181)
文摘The molecular structures of ground state and first single excited state for pyrazoline derivatives are optimized with DFT B3LYP method and ab initio “configuration interaction with single excitations”(CIS) method, respectively. The frontier molecular orbital characteristics have been analyzed systematically, and the electronic transition mechanism has been discussed. Electronic spectra are calculated by using TD-DFT method. These results are consistent with those from the experiment.
文摘Based on density functional theory(DFT) and time-dependent density functional theory(TD-DFT), the effects of substituent on the excited-state intramolecular proton transfer(ESIPT) process and photophysical properties of 2-(2’-hydroxyphenyl)-4-chloromethylthiazole(HCT) are studied. The electron-donating group(CH_(3), OH) and electronwithdrawing group(CF_(3), CHO) are introduced to analyze the changes of intramolecular H-bond, the frontier molecular orbitals, the absorption/fluorescence spectra, and the energy barrier of ESIPT process. The calculation results indicate that electron-donating group strengthens the intramolecular H-bond in the S_(1) state, and leads to an easier ESIPT process. The electron-withdrawing group weakens the corresponding H-bond and makes ESIPT process a little harder. Different substituents also affect the photophysical properties of HCT. The electron-withdrawing group(CF_(3), CHO) has a little effect on electronic spectra. The electron-donating group(CH_(3), OH) red-shifts both the absorption and fluorescence emission peaks of HCT, respectively, which causes the Stokes shift to increase.
基金supported by Taif University Researchers,Taif University,Taif,Saudi Arabia(grant numbers TURSP-2020/22)。
文摘Yttrium(Ⅲ)oxide or so-called diyttrium trioxide(Y_2O_3)is an excellent candidate ceramic material for optoelectronic applications.Structural,electrical conductivity,and dielectric relaxation properties of bulk yttrium(Ⅲ)oxide were studied.X-ray diffraction(XRD)results indicate that the yttrium(Ⅲ)oxide compound has a crystalline cubic phase.Fourier transform infrared(FTIR)technique was used to ascertain the chemical structure of the yttrium(Ⅲ)oxide compound.Impedance spectroscopy was used to analyze frequency-dependent electrical properties as a function of temperature in the range of 303-423 K and frequency range of 0.1 Hz-2 MHz.Impedance spectroscopy parameters such as dielectric constant,dielectric loss,loss factor,electric modulus,and complex impedance of the yttrium(Ⅲ)oxide compound were studied.The Nyquist plot describes the complex impedance of the yttrium(Ⅲ)oxide for different temperatures.The universal Jonscher's power law was used for the analysis of the complex electrical conductivity of the yttrium(Ⅲ)oxide compound.It is found that the real(σ')and imaginary(σ")parts of the complex conductivity increase with increasing frequency.The exponent frequency(s)equals unity,which confirms that the predominant conduction mechanism is a nearly constant loss(NCL)mechanism.DFT/TD-DFT studies using B3LYP/LanL2DZ level of theory were used to provide comparable theoretical data and electronic energy gap of HOMO→LUMO.
基金CONCYTEC and PROCIENCIA agencies from Peru in the framework of the call for Basic Research Projects2019-01[contract number401-2019-FONDECYT].
文摘This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy.
基金Supported by the National Natural Science Foundation of China(Nos.21173099, 20973078, 51164017), the Applied Basic Research Plans Program of Yunnan Province, China(No.2011FZ040), the Scientific Research Fund of Yunnan Provincial Educa- tion Department, China(No.2012Y545), the Training Foundation for Talents of Kunming University of Science and Technolo- gy(No.KKSY201232040) and the Foundation of State Key Laboratory of Theoretical and Computational Chemistry, China.
文摘We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-l), determined by the time dependent-density functional theory(TD-DFT) approach. The analysis is based on a direct comparison with the highly correlated CASSCF(MS-CASPT2) ab initio approach. 49 DFT functionals were considered and applied to the study. Among the tested functionals, mPW3PBE, B3PW91 and B3P86 give the best performance for ground-state geometry, absorption spectrum, excited-state geometry and emis- sion spectrum.
基金the National Natural Science Foundation of China (21290192)
文摘The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be "from fragments to molecule" (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.
基金supported by the National Natural Science Foundation of China (NSFC,21071001,51142011,21101001)Education Department of Anhui Province (KJ2010A030)the "211" Project of Anhui University
文摘In this study,linear absorption,single-photon excited fluorescence,fluorescence quantum yields,fluorescence lifetime and two-photon excited fluorescence of a series of triphenylamine derivatives (L1,L2,L3 and L4) have been measured.L1 and L3 are D--A type dyes,while L2 and L4 are D--D--A type dyes (D=donor,A=acceptor).The investigated compounds consist of triphenylamine-bearing donor-substituted and/or systematically extended-conjugated length,which are designed to gain insight into the effect of the ethoxyl unit and-linkage length on the linear and nonlinear optical properties.The influence of solvent polarity on the photophysical properties was investigated.Employing time-dependent density functional theory (TD-DFT) calculations,the structure-property relationships are discussed.
文摘Pyrene is one of significant fluorescent material and its fluorescence properties are excellent.It has been widely used for such as OLEDs,DSCs,LMOGs and so on[1-5].What's more,pyrene has been successfully applied to signaling the presence of metal ions,nucleic acids,proteins and so on[6-9].Thus,the development of the fluorescent dyes based on pyrene has been a research focus[10-12].However,the synthesis of many pyrene derivatives needed the high-cost coupling reaction such as Heck reaction and Suzuki reaction[1-3,10-12].
文摘The molecular structures of the ground and the lowest triplet states for a series of Pt(ll) complexes PtLCl(l)[L=6-(2-hydroxyphenyl)-2,2'-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyClz(bpy=2,2'- bipyridine)(3), and the free tridentate L ligand(4) were optimized by the density functional theory B3LYP and UB3LYP methods, respectively. On the basis of optimized geometries, the spectral properties were investigated with time-dependent density functional theory(TD-DFT). In comparison with those of complexes 2 and 3, the more rigid structure of complex 1 together with its low rate of the radiationless decay via nonemissive d-d state leads to higher photoluminescence quantum efficiency. And the phosphorescence quantum efficiency of complex 1 can be easily controlled by modifying auxiliary ligands. The introduction of fluorine ligand into complexes can effectively increase the radiation transition rate and decrease the radiationless d-d transition rate, and as a result, a novel complex PtLF(5) might be a good phosphorescent material suitable for organic electronic devices.