A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifier...A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifiers with gain boost structure, and biasing all the cells with the same voltage bias source, which requires careful layout design and large capacitors. In addition,capacitor array DAC is also applied to reduce power consumption,and low threshold voltage MOS transistors are used to achieve a large signal processing range. The ADC was implemented in a 0.18μm 4M-1 P CMOS process,and the experimental results indicate that it consumes only 7mW, which is much less than general pipeline ADCs. The ADC was used in a 300000 pixels CMOS image sensor.展开更多
CMOS image sensors produced by the existing CMOS manufacturing process usually have difficulty achieving complete charge transfer owing to the introduction of potential barriers or Si/SiO_(2)interface state traps in t...CMOS image sensors produced by the existing CMOS manufacturing process usually have difficulty achieving complete charge transfer owing to the introduction of potential barriers or Si/SiO_(2)interface state traps in the charge transfer path,which reduces the charge transfer efficiency and image quality.Until now,scholars have only considered mechanisms that limit charge transfer from the perspectives of potential barriers and spill back effect under high illumination condition.However,the existing models have thus far ignored the charge transfer limitation due to Si/SiO_(2)interface state traps in the transfer gate channel,particularly under low illumination.Therefore,this paper proposes,for the first time,an analytical model for quantifying the incomplete charge transfer caused by Si/SiO_(2)interface state traps in the transfer gate channel under low illumination.This model can predict the variation rules of the number of untransferred charges and charge transfer efficiency when the trap energy level follows Gaussian distribution,exponential distribution and measured distribution.The model was verified with technology computer-aided design simulations,and the results showed that the simulation results exhibit the consistency with the proposed model.展开更多
The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot ...The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection.展开更多
The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic par...The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic parameters of the dark output images captured atdifferent radiation dose, e.g. average brightness and itsnon-uniformity of dark out- put images, were analyzed by our testsoftware. The primary explanation for the change of the parameterswith the radi- ation dose was given.展开更多
A signal chain model of single-bit and multi-bit quanta image sensors(QISs)is established.Based on the proposed model,the photoresponse characteristics and signal error rates of QISs are investigated,and the effects o...A signal chain model of single-bit and multi-bit quanta image sensors(QISs)is established.Based on the proposed model,the photoresponse characteristics and signal error rates of QISs are investigated,and the effects of bit depth,quantum efficiency,dark current,and read noise on them are analyzed.When the signal error rates towards photons and photoelectrons counting are lower than 0.01,the high accuracy photon and photoelectron counting exposure ranges are determined.Furthermore,an optimization method of integration time to ensure that the QIS works in these high accuracy exposure ranges is presented.The trade-offs between pixel area,the mean value of incident photons,and integration time under different illuminance level are analyzed.For the 3-bit QIS with 0.16 e-/s dark current and 0.21 e-r.m.s.read noise,when the illuminance level and pixel area are 1 lux and 1.21μm^(2),or 10000 lux and 0.21μm^(2),the recommended integration time is 8.8 to 30 ms,or 10 to21.3μs,respectively.The proposed method can guide the design and operation of single-bit and multi-bit QISs.展开更多
Photo-generated carriers may diffuse into the adjacent cells to form the electrical crosstalk, which is especially no- ticeable after the pixel cell size has been scaled down. The electrical crosstalk strongly depends...Photo-generated carriers may diffuse into the adjacent cells to form the electrical crosstalk, which is especially no- ticeable after the pixel cell size has been scaled down. The electrical crosstalk strongly depends on the structure and electrical properties of the photosensitive areas. In this work, time-dependent crosstalk effects considering different isola- tion structures are investigated. According to the different depths of photo-diode (PD) and isolation structure, the transport of photo-generated carriers is analyzed with different regions in the pixel cell. The evaluation of crosstalk is influenced by exposure time. Crosstalk can be suppressed by reducing the exposure time. However, the sensitivity and dynamic range of the image sensor need to be considered as well.展开更多
Two image sensors simulate directly the way of disposing images with the human's two eyes, so it has important value to apply in many domains, such as object identification, small unmaned aerial vehicle (UAV), work...Two image sensors simulate directly the way of disposing images with the human's two eyes, so it has important value to apply in many domains, such as object identification, small unmaned aerial vehicle (UAV), workpiece localization, robot navigation and so on. The object localization based on two image sensots is studied in this paper. It concentrates on how to apply two charge coupled device (CCD) image sensors to object localization of sphere in complex environments. At first a space model of the two image sensors is set up, then Hough transformation is adopted to get localizated model and arithmetic system. An experiment platform is built in order to prove the correctness and feasibility of that localization algorithm.展开更多
Changes of the average brightness and non-uniformity of dark output images,and quality of pictures captured under natural lighting for the color CMOS digital image sensorsirradiated at different electron doses have be...Changes of the average brightness and non-uniformity of dark output images,and quality of pictures captured under natural lighting for the color CMOS digital image sensorsirradiated at different electron doses have been studied in comparison to those from theγ-irradiated sensors. For the electron-irradiated sensors, the non-uniformity increases obviouslyand a small bright region on the dark image appears at the dose of 0.4 kGy. The average brightnessincreases at 0.4 kGy, increases sharply at 0.5 kGy. The picture is very blurry only at 0.6 kGy,showing the sensor undergoes severe performance degradation. Electron radiation damage is much moresevere than γ radiation damage for the CMOS image sensors. A possible explanation is presented inthis paper.展开更多
This research,by use of RS image_simulating method,simulated apparent reflectance images at sensor level and ground_reflectance images of SPOT_HRV,CBERS_CCD,Landsat_TM and NOAA14_AVHRR’s corresponding bands.These ima...This research,by use of RS image_simulating method,simulated apparent reflectance images at sensor level and ground_reflectance images of SPOT_HRV,CBERS_CCD,Landsat_TM and NOAA14_AVHRR’s corresponding bands.These images were used to analyze sensor’s differences caused by spectral sensitivity and atmospheric impacts.The differences were analyzed on Normalized Difference Vegetation Index(NDVI).The results showed that the differences of sensors’ spectral characteristics cause changes of their NDVI and reflectance.When multiple sensors’ data are applied to digital analysis,the error should be taken into account.Atmospheric effect makes NDVI smaller,and atmospheric correction has the tendency of increasing NDVI values.The reflectance and their NDVIs of different sensors can be used to analyze the differences among sensor’s features.The spectral analysis method based on RS simulated images can provide a new way to design the spectral characteristics of new sensors.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
An addition scheme applicable to time-delay integration (TDI) CMOS image sensor is proposed,which adds signals in the charge domain in the pixel array.A two-shared pixel structure adopting two-stage charge transfer is...An addition scheme applicable to time-delay integration (TDI) CMOS image sensor is proposed,which adds signals in the charge domain in the pixel array.A two-shared pixel structure adopting two-stage charge transfer is introduced,together with the rolling shutter with an undersampling readout timing.Compared with the conventional TDI addition methods,the proposed scheme can reduce the addition operations by half in the pixel array,which decreases the power consumption of addition circuits outside the pixel array.The timing arrangement and pixel structure are analyzed in detail.The simulation results show that the proposed pixel structure can achieve the charge addition with negligible nonlinearity,therefore the power consumption of the periphery addition circuits can be reduced by half theoretically.展开更多
A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase...A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.展开更多
A new photodetector--bipolar junction photogate transistor is presented for CMOS image sensor and its analytical model is also established.With the technical parameter of the 0.6μm CMOS process,the bipolar junction p...A new photodetector--bipolar junction photogate transistor is presented for CMOS image sensor and its analytical model is also established.With the technical parameter of the 0.6μm CMOS process,the bipolar junction photogate transistor is analyzed and simulated.The simulated results illustrate that the bipolar junction photogate transistor has the similar characteristics of the traditional photogate transistor.The photocurrent density of the bipolar junction photogate transistor increases exponentially with the incidence light power due to introducing the injection p+n junction.Its characteristic of blue response is rather improved compared to the traditional photogate transistor that benefits to increase the color photograph made up of the red,the green,and the blue.展开更多
A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 4...A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 43%,higher than the traditional factor of 30%. Moreover, compared with the conventional method whose fixed pattern noise (FPN) is around 0.5%, a dynamic digital double sampling technique is developed, which possesses simpler circuit architecture and a better FPN suppression outcome. The CMOS image sensor chip is implemented in the 0.35μm mixed signal process of a Chartered by MPW. The experimental results show that the chip operates welt,with an FPN of about 0.17%.展开更多
Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the comp...Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the complex programmable logic device (CPLD) based logic controlling, exposure signal processing, the arc state detecting, the mechanical iris driving and so on, is designed at first. Then, a visual image sensor consists of an ordinary CCD camera, optical system and exposure controller is established. The exposure synchronic control logic is described with very-high-speed integrated circuit hardware description language (VHDL) and programmed with CPLD , to detect weld pool images at the stage of base current in pulsed MIG welding. Finally, both bead on plate welding and V groove filled welding are carried out, clear and consistent weld pool images are acquired.展开更多
A double sampling circuit to eliminating fixed pattern noise(FPN) in CMOS image sensor (CIS) is presented. Double sampling is implemented by column switch capacitor amplifier directly, and offset compensation is added...A double sampling circuit to eliminating fixed pattern noise(FPN) in CMOS image sensor (CIS) is presented. Double sampling is implemented by column switch capacitor amplifier directly, and offset compensation is added to the amplifier to suppress column FPN. The amplifier is embedded in a 64×64 CIS and successfully fabricated with chartered 0.35 μm process. Theory analysis and circuit simulation indicate that FPN can be suppressed from millivolt to microvolt. Test results show that FPN is smaller than one least-significant bit of 8 bit ADC. FPN is reduced to an acceptable level with double sampling technique implemented with switch capacitor amplifier.展开更多
We report a high-performance active image sensor pixel design by utilizing amorphous-indium-gallium-zinc-oxide(aIGZO) thin-film transistors(TFTs) with a circular structure. The TFT, configured with the inner electrode...We report a high-performance active image sensor pixel design by utilizing amorphous-indium-gallium-zinc-oxide(aIGZO) thin-film transistors(TFTs) with a circular structure. The TFT, configured with the inner electrode as source and outer electrode as drain, typically exhibits good saturation electrical characteristics, where the device has a constant drive current despite variations in drain voltage. Due to the very high output resistance exhibited by this asymmetric TFT structure with a circular shape, the pixel circuit considered here in common-drain configuration provides a higher gain of operation than a pixel circuit implemented with rectangular a-IGZO TFTs. They can be used as driving TFTs in active image sensor circuits. They are, therefore,good candidates for digital X-ray detectors in applications such as medical diagnostic procedures.展开更多
In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaA...In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor.展开更多
A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correl...A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissi...展开更多
In this paper we report on a study of the CMOS image sensor detection of DNA based on self-assembled nano- metallic particles, which are selectively deposited on the surface of the passive image sensor. The nano-metal...In this paper we report on a study of the CMOS image sensor detection of DNA based on self-assembled nano- metallic particles, which are selectively deposited on the surface of the passive image sensor. The nano-metallic particles effectively block the optical radiation in the visible spectrum of ordinary light source. When such a technical method is applied to DNA detection, the requirement for a special UV light source in the most popular fluorescence is eliminated. The DNA detection methodology is tested on a CMOS sensor chip fabricated using a standard 0.5 gm CMOS process. It is demonstrated that the approach is highly selective to detecting even a signal-base mismatched DNA target with an extremely-low-concentration DNA sample down to 10 pM under an ordinary light source.展开更多
文摘A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifiers with gain boost structure, and biasing all the cells with the same voltage bias source, which requires careful layout design and large capacitors. In addition,capacitor array DAC is also applied to reduce power consumption,and low threshold voltage MOS transistors are used to achieve a large signal processing range. The ADC was implemented in a 0.18μm 4M-1 P CMOS process,and the experimental results indicate that it consumes only 7mW, which is much less than general pipeline ADCs. The ADC was used in a 300000 pixels CMOS image sensor.
基金supported by the National Natural Science Foundation of China(62171172).
文摘CMOS image sensors produced by the existing CMOS manufacturing process usually have difficulty achieving complete charge transfer owing to the introduction of potential barriers or Si/SiO_(2)interface state traps in the charge transfer path,which reduces the charge transfer efficiency and image quality.Until now,scholars have only considered mechanisms that limit charge transfer from the perspectives of potential barriers and spill back effect under high illumination condition.However,the existing models have thus far ignored the charge transfer limitation due to Si/SiO_(2)interface state traps in the transfer gate channel,particularly under low illumination.Therefore,this paper proposes,for the first time,an analytical model for quantifying the incomplete charge transfer caused by Si/SiO_(2)interface state traps in the transfer gate channel under low illumination.This model can predict the variation rules of the number of untransferred charges and charge transfer efficiency when the trap energy level follows Gaussian distribution,exponential distribution and measured distribution.The model was verified with technology computer-aided design simulations,and the results showed that the simulation results exhibit the consistency with the proposed model.
基金supported in part by the Hainan Provincial Natural Science Foundation of China (No.620MS067)the Intelligent Medical Project of Chongqing Medical University (ZHYXQNRC202101)the Student Scientific Research and Innovation Experiment Project of the Medical Information College of Chongqing Medical University (No.2020C006).
文摘The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection.
基金the National Natural Science Foundation of China (No.10075029).
文摘The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic parameters of the dark output images captured atdifferent radiation dose, e.g. average brightness and itsnon-uniformity of dark out- put images, were analyzed by our testsoftware. The primary explanation for the change of the parameterswith the radi- ation dose was given.
基金supported by the Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology。
文摘A signal chain model of single-bit and multi-bit quanta image sensors(QISs)is established.Based on the proposed model,the photoresponse characteristics and signal error rates of QISs are investigated,and the effects of bit depth,quantum efficiency,dark current,and read noise on them are analyzed.When the signal error rates towards photons and photoelectrons counting are lower than 0.01,the high accuracy photon and photoelectron counting exposure ranges are determined.Furthermore,an optimization method of integration time to ensure that the QIS works in these high accuracy exposure ranges is presented.The trade-offs between pixel area,the mean value of incident photons,and integration time under different illuminance level are analyzed.For the 3-bit QIS with 0.16 e-/s dark current and 0.21 e-r.m.s.read noise,when the illuminance level and pixel area are 1 lux and 1.21μm^(2),or 10000 lux and 0.21μm^(2),the recommended integration time is 8.8 to 30 ms,or 10 to21.3μs,respectively.The proposed method can guide the design and operation of single-bit and multi-bit QISs.
基金Project supported by the National Key Research and Development Program of China(Grant No.NKRDP 2016YFA0202101)
文摘Photo-generated carriers may diffuse into the adjacent cells to form the electrical crosstalk, which is especially no- ticeable after the pixel cell size has been scaled down. The electrical crosstalk strongly depends on the structure and electrical properties of the photosensitive areas. In this work, time-dependent crosstalk effects considering different isola- tion structures are investigated. According to the different depths of photo-diode (PD) and isolation structure, the transport of photo-generated carriers is analyzed with different regions in the pixel cell. The evaluation of crosstalk is influenced by exposure time. Crosstalk can be suppressed by reducing the exposure time. However, the sensitivity and dynamic range of the image sensor need to be considered as well.
基金Sponsored by the Ministerial Level Advanced Research Foundation(51305010102)
文摘Two image sensors simulate directly the way of disposing images with the human's two eyes, so it has important value to apply in many domains, such as object identification, small unmaned aerial vehicle (UAV), workpiece localization, robot navigation and so on. The object localization based on two image sensots is studied in this paper. It concentrates on how to apply two charge coupled device (CCD) image sensors to object localization of sphere in complex environments. At first a space model of the two image sensors is set up, then Hough transformation is adopted to get localizated model and arithmetic system. An experiment platform is built in order to prove the correctness and feasibility of that localization algorithm.
基金This project is financially supported by the Narional Natural Science Foundation of China(Nos 10375034 and 10075029) and the Basic Research Foundation of Tsinghua University (No. JC2002058).
文摘Changes of the average brightness and non-uniformity of dark output images,and quality of pictures captured under natural lighting for the color CMOS digital image sensorsirradiated at different electron doses have been studied in comparison to those from theγ-irradiated sensors. For the electron-irradiated sensors, the non-uniformity increases obviouslyand a small bright region on the dark image appears at the dose of 0.4 kGy. The average brightnessincreases at 0.4 kGy, increases sharply at 0.5 kGy. The picture is very blurry only at 0.6 kGy,showing the sensor undergoes severe performance degradation. Electron radiation damage is much moresevere than γ radiation damage for the CMOS image sensors. A possible explanation is presented inthis paper.
文摘This research,by use of RS image_simulating method,simulated apparent reflectance images at sensor level and ground_reflectance images of SPOT_HRV,CBERS_CCD,Landsat_TM and NOAA14_AVHRR’s corresponding bands.These images were used to analyze sensor’s differences caused by spectral sensitivity and atmospheric impacts.The differences were analyzed on Normalized Difference Vegetation Index(NDVI).The results showed that the differences of sensors’ spectral characteristics cause changes of their NDVI and reflectance.When multiple sensors’ data are applied to digital analysis,the error should be taken into account.Atmospheric effect makes NDVI smaller,and atmospheric correction has the tendency of increasing NDVI values.The reflectance and their NDVIs of different sensors can be used to analyze the differences among sensor’s features.The spectral analysis method based on RS simulated images can provide a new way to design the spectral characteristics of new sensors.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
基金Supported by National Natural Science Foundation of China (No.61036004 and No. 61076024)Ph.D. Programs Foundation of Ministry of Education of China (No. 20100032110031)
文摘An addition scheme applicable to time-delay integration (TDI) CMOS image sensor is proposed,which adds signals in the charge domain in the pixel array.A two-shared pixel structure adopting two-stage charge transfer is introduced,together with the rolling shutter with an undersampling readout timing.Compared with the conventional TDI addition methods,the proposed scheme can reduce the addition operations by half in the pixel array,which decreases the power consumption of addition circuits outside the pixel array.The timing arrangement and pixel structure are analyzed in detail.The simulation results show that the proposed pixel structure can achieve the charge addition with negligible nonlinearity,therefore the power consumption of the periphery addition circuits can be reduced by half theoretically.
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)
文摘A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.
文摘A new photodetector--bipolar junction photogate transistor is presented for CMOS image sensor and its analytical model is also established.With the technical parameter of the 0.6μm CMOS process,the bipolar junction photogate transistor is analyzed and simulated.The simulated results illustrate that the bipolar junction photogate transistor has the similar characteristics of the traditional photogate transistor.The photocurrent density of the bipolar junction photogate transistor increases exponentially with the incidence light power due to introducing the injection p+n junction.Its characteristic of blue response is rather improved compared to the traditional photogate transistor that benefits to increase the color photograph made up of the red,the green,and the blue.
文摘A single CMOS image sensor based on a 0.35μm process along with its design and implementation is introduced. The architecture of an active pixel sensor is used in the chip. The fill factor of a pixel cell can reach 43%,higher than the traditional factor of 30%. Moreover, compared with the conventional method whose fixed pattern noise (FPN) is around 0.5%, a dynamic digital double sampling technique is developed, which possesses simpler circuit architecture and a better FPN suppression outcome. The CMOS image sensor chip is implemented in the 0.35μm mixed signal process of a Chartered by MPW. The experimental results show that the chip operates welt,with an FPN of about 0.17%.
基金This work was supported by the National High Technology Research and Development Program("863"Program) of China ( ContractNo 2007AA04Z258)
文摘Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the complex programmable logic device (CPLD) based logic controlling, exposure signal processing, the arc state detecting, the mechanical iris driving and so on, is designed at first. Then, a visual image sensor consists of an ordinary CCD camera, optical system and exposure controller is established. The exposure synchronic control logic is described with very-high-speed integrated circuit hardware description language (VHDL) and programmed with CPLD , to detect weld pool images at the stage of base current in pulsed MIG welding. Finally, both bead on plate welding and V groove filled welding are carried out, clear and consistent weld pool images are acquired.
基金Supported by National Natural Science Foundation of China (No.60576025).
文摘A double sampling circuit to eliminating fixed pattern noise(FPN) in CMOS image sensor (CIS) is presented. Double sampling is implemented by column switch capacitor amplifier directly, and offset compensation is added to the amplifier to suppress column FPN. The amplifier is embedded in a 64×64 CIS and successfully fabricated with chartered 0.35 μm process. Theory analysis and circuit simulation indicate that FPN can be suppressed from millivolt to microvolt. Test results show that FPN is smaller than one least-significant bit of 8 bit ADC. FPN is reduced to an acceptable level with double sampling technique implemented with switch capacitor amplifier.
文摘We report a high-performance active image sensor pixel design by utilizing amorphous-indium-gallium-zinc-oxide(aIGZO) thin-film transistors(TFTs) with a circular structure. The TFT, configured with the inner electrode as source and outer electrode as drain, typically exhibits good saturation electrical characteristics, where the device has a constant drive current despite variations in drain voltage. Due to the very high output resistance exhibited by this asymmetric TFT structure with a circular shape, the pixel circuit considered here in common-drain configuration provides a higher gain of operation than a pixel circuit implemented with rectangular a-IGZO TFTs. They can be used as driving TFTs in active image sensor circuits. They are, therefore,good candidates for digital X-ray detectors in applications such as medical diagnostic procedures.
基金supported by the National Natural Science Foundation of China(No.61575059,No.61675062,No.21501038)the Fundamental Research Funds for the Central Universities(No.JZ2018HGPB0275,No.JZ2018HGTA0220,and No.JZ2018HGXC0001).
文摘In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor.
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)Tianjin Innovation Special Funds for Science and Technology (No.05FZZDGX00200)
文摘A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissi...
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61036004)the Shenzhen Science & Technology Foundation, China (Grant No. CXB201005250031A)+1 种基金the Fundamental Research Project of Shenzhen Science & Technology Foundation, China (Grant No. JC201005280670A)the International Collaboration Project of Shenzhen Science & Technology Foundation, China (Grant No. ZYA2010006030006A)
文摘In this paper we report on a study of the CMOS image sensor detection of DNA based on self-assembled nano- metallic particles, which are selectively deposited on the surface of the passive image sensor. The nano-metallic particles effectively block the optical radiation in the visible spectrum of ordinary light source. When such a technical method is applied to DNA detection, the requirement for a special UV light source in the most popular fluorescence is eliminated. The DNA detection methodology is tested on a CMOS sensor chip fabricated using a standard 0.5 gm CMOS process. It is demonstrated that the approach is highly selective to detecting even a signal-base mismatched DNA target with an extremely-low-concentration DNA sample down to 10 pM under an ordinary light source.