Simple models are proposed for the calculation of refractive index n and electronic polarizability α of AⅠBⅢC2Ⅵ and AⅡBⅣC2Ⅴ compounds of groups of chalcopyrite semiconductors from their energy gap data. The val...Simple models are proposed for the calculation of refractive index n and electronic polarizability α of AⅠBⅢC2Ⅵ and AⅡBⅣC2Ⅴ compounds of groups of chalcopyrite semiconductors from their energy gap data. The values family and 12 compounds of AⅡBⅣC2Ⅴ family are calculated for the work. The proposed models are applicable for the whole range of energy gap materials. The calculated values are compared with the available experimental and reported values. A fairly good agreement between them is obtained.展开更多
The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzman...The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.展开更多
In the present work, we have studied the temporal evolution of aluminum alloy plasma produced by the fundamental (1064 nm) of a Q-switched Nd:YAG laser by placing the target material in air at atmospheric pressure. Th...In the present work, we have studied the temporal evolution of aluminum alloy plasma produced by the fundamental (1064 nm) of a Q-switched Nd:YAG laser by placing the target material in air at atmospheric pressure. The four Al I-neutral lines at 308.21, 309.27, 394.40 and 369.15 nm as well as Al II-ionic lines at 281.61, 385.64 and 466.30 nm are used for the determination of the electron temperature Te using Saha-Boltzmann plot method. The neutral aluminum lines were found to suffer from optical thickness which manifested itself on the form of scattered points around the Saha-Boltzmann line. The isolated optically thin hydrogen Hα-line at 656.27 nm appeared in the spectra under the same experimental conditions was used to correct the Al I-lines which contained some optical thickness. The measurements were repeated at different delay times ranging from 1 to 5 μs. The comparison between the deduced electron temperatures from aluminum neutral lines before correction against the effect self-absorption to that after correction revealed a precise value in temperature. The results sure that, in case of the presence of self-absorption effect the temperature varies from (1.4067 - 1.2548 eV) as the delay time is varied from 0 to 5 μs. Whereas, in the case of repairing against the effect, it varies from (1.2826 - 0.8961 eV) for the same delay time variation.展开更多
The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electr...The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.展开更多
In this paper, the principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been discribed. Several results under different conditions on HL-IM tokamak have been ...In this paper, the principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been discribed. Several results under different conditions on HL-IM tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre.展开更多
Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-co...Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials展开更多
First-principles evolutionary calculation was performed to search for all probable stable Ga–Te compounds at extreme pressure. In addition to the well-known structures of P6_3/mmc and Fm-3 m Ga Te and I4/m Ga_2 Te_5,...First-principles evolutionary calculation was performed to search for all probable stable Ga–Te compounds at extreme pressure. In addition to the well-known structures of P6_3/mmc and Fm-3 m Ga Te and I4/m Ga_2 Te_5, several new structures were uncovered at high pressure, namely, orthorhombic I4/mmm GaTe_2 and monoclinic C2/m Ga Te_3, and all the Ga–Te structures stabilize up to a maximum pressure of 80 GPa. The calculation of the electronic energy band indicated that the high-pressure phases of the Ga–Te system are metallic, whereas the low-pressure phases are semiconductors. The electronic localization functions(ELFs) of the Ga–Te system were also calculated to explore the bond characteristics. The results showed that a covalent bond is formed at low pressure, however, this bond disappears at high pressure, and an ionic bond is formed at extreme pressure.展开更多
Structural, electronic, and optical properties of alloys BexMgl-xX (X = S, Se, Te) in the assortment 0 〈 x 〈 1 were theoretically reported for the first time in zinc-blende (ZB) phase. The calculations were carr...Structural, electronic, and optical properties of alloys BexMgl-xX (X = S, Se, Te) in the assortment 0 〈 x 〈 1 were theoretically reported for the first time in zinc-blende (ZB) phase. The calculations were carried out by using full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) formalism contained by the framework of density functional theory (DFT). Wu--Cohen (WC) generalized gradient approximation (GGA), based on optimization energy, has been applied to calculate these theoretical results. In addition, we used Becke and Johnson (mBJ-GGA) potential, modified form of GGA functional, to calculate electronic structural properties up to a high precision degree. The alloys were composed with the concentrations x = 0.25, 0.5, and 0.75 in pursuance of 'special quasi-random structures' (SQS) approach of Zunger for the restoration of disorder around the observed site of alloys in the first few shells. The structural parameters have been predicted by minimizing the total energy in correspondence of unit cell volume. Our alloys established direct band gap at different concentrations that make their importance in optically active materials. Furthermore, density of states was discussed in terms of the contribution of Be and Mg s and chalcogen (S, Se, and Te) s and p states and observed charge density helped us to investigate the bonding nature. By taking into consideration of immense importance in optoelectronics of these materials, the complex dielectric function was calculated for incident photon energy in the range 0--15 eV.展开更多
Three-dimensional(3 D)topological insulators(TIs)are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost pre...Three-dimensional(3 D)topological insulators(TIs)are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is the key to the practical applications of TIs.Here we show that wafer-sized Bi2Te3 family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO2/Si substrates by magnetron cosputtering.The SiO2/Si substrates enable us to electrically tune(Bi1-xSbx)2Te3 and Cr-doped(Bi1-xSbx)2 Te3 TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states,such as the quantum anomalous Hall effect(QAHE).This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.展开更多
Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response...Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response and high-accuracy voltage source converters.This paper models its primary circuit and addresses its basic operation mechanism.Then a dual-timescale control scheme is investigated to realize the coordinated regulation of both types of converter.A simulation case is established in PSCAD containing interconnected mid-voltage distribution networks.Simulations with poor-and well-matched control timescales are both carried out.And accordingly,the power flow controllability under these conditions is compared.When the shorter control timescale is no more than tenth of the longer one,the power electronic zigzag transformer will operate with satisfying performances.展开更多
The Discrete Variational Xα Method DV-Xα with an embeded cluster scheme was used to investigate electronic structure, energy levels, charge distribution and chemical bonding in p-type thermoelectric ceramics :Sb2Te3...The Discrete Variational Xα Method DV-Xα with an embeded cluster scheme was used to investigate electronic structure, energy levels, charge distribution and chemical bonding in p-type thermoelectric ceramics :Sb2Te3-Bi2Te3-Sb2Se3. The results obtained are in agreement with experiment ones, which are instructive to material design.展开更多
文摘Simple models are proposed for the calculation of refractive index n and electronic polarizability α of AⅠBⅢC2Ⅵ and AⅡBⅣC2Ⅴ compounds of groups of chalcopyrite semiconductors from their energy gap data. The values family and 12 compounds of AⅡBⅣC2Ⅴ family are calculated for the work. The proposed models are applicable for the whole range of energy gap materials. The calculated values are compared with the available experimental and reported values. A fairly good agreement between them is obtained.
基金Funded by National Natural Science Foundation of China(Nos.81371973 and 11304090)Wuhan Municipal Health and Family Planning Commission Foundation of China(No.WX15C10)
文摘The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.
文摘In the present work, we have studied the temporal evolution of aluminum alloy plasma produced by the fundamental (1064 nm) of a Q-switched Nd:YAG laser by placing the target material in air at atmospheric pressure. The four Al I-neutral lines at 308.21, 309.27, 394.40 and 369.15 nm as well as Al II-ionic lines at 281.61, 385.64 and 466.30 nm are used for the determination of the electron temperature Te using Saha-Boltzmann plot method. The neutral aluminum lines were found to suffer from optical thickness which manifested itself on the form of scattered points around the Saha-Boltzmann line. The isolated optically thin hydrogen Hα-line at 656.27 nm appeared in the spectra under the same experimental conditions was used to correct the Al I-lines which contained some optical thickness. The measurements were repeated at different delay times ranging from 1 to 5 μs. The comparison between the deduced electron temperatures from aluminum neutral lines before correction against the effect self-absorption to that after correction revealed a precise value in temperature. The results sure that, in case of the presence of self-absorption effect the temperature varies from (1.4067 - 1.2548 eV) as the delay time is varied from 0 to 5 μs. Whereas, in the case of repairing against the effect, it varies from (1.2826 - 0.8961 eV) for the same delay time variation.
基金Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212104) and the Foundation for University Young Core Instructors of Henan Province, China (Grant No. 2010GGJS-066).
文摘The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.
文摘In this paper, the principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been discribed. Several results under different conditions on HL-IM tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre.
基金Project supported by the Australian Research CouncilZhi-Gang Chen thanks the USQ start-up grantstrategic research grant
文摘Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials
基金Project supported by the National Key R&D Program of China(Grant Nos.2018YFA0305900 and 2016YFB0201204)the National Natural Science Foundation of China(Grant Nos.51632002,51572108,11574109,91745203,and 11634004)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT 15R23)National Fund for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘First-principles evolutionary calculation was performed to search for all probable stable Ga–Te compounds at extreme pressure. In addition to the well-known structures of P6_3/mmc and Fm-3 m Ga Te and I4/m Ga_2 Te_5, several new structures were uncovered at high pressure, namely, orthorhombic I4/mmm GaTe_2 and monoclinic C2/m Ga Te_3, and all the Ga–Te structures stabilize up to a maximum pressure of 80 GPa. The calculation of the electronic energy band indicated that the high-pressure phases of the Ga–Te system are metallic, whereas the low-pressure phases are semiconductors. The electronic localization functions(ELFs) of the Ga–Te system were also calculated to explore the bond characteristics. The results showed that a covalent bond is formed at low pressure, however, this bond disappears at high pressure, and an ionic bond is formed at extreme pressure.
基金the Deanship of Scientific Research at King Saud University for funding this Research group No.RG 1435-004
文摘Structural, electronic, and optical properties of alloys BexMgl-xX (X = S, Se, Te) in the assortment 0 〈 x 〈 1 were theoretically reported for the first time in zinc-blende (ZB) phase. The calculations were carried out by using full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) formalism contained by the framework of density functional theory (DFT). Wu--Cohen (WC) generalized gradient approximation (GGA), based on optimization energy, has been applied to calculate these theoretical results. In addition, we used Becke and Johnson (mBJ-GGA) potential, modified form of GGA functional, to calculate electronic structural properties up to a high precision degree. The alloys were composed with the concentrations x = 0.25, 0.5, and 0.75 in pursuance of 'special quasi-random structures' (SQS) approach of Zunger for the restoration of disorder around the observed site of alloys in the first few shells. The structural parameters have been predicted by minimizing the total energy in correspondence of unit cell volume. Our alloys established direct band gap at different concentrations that make their importance in optically active materials. Furthermore, density of states was discussed in terms of the contribution of Be and Mg s and chalcogen (S, Se, and Te) s and p states and observed charge density helped us to investigate the bonding nature. By taking into consideration of immense importance in optoelectronics of these materials, the complex dielectric function was calculated for incident photon energy in the range 0--15 eV.
基金National Key R&D Plan Program of China(Grant No.2017YFF0206104)National Key Scien-tific Research Projects of China(Grant No.2015CB921502)+3 种基金National Natural Science Foundation of China(Grant Nos.61574169 and 51871018)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics of Chinese Academy of SciencesBeijing Natural Science Foundation(Grant No.Z180014)Beijing Outstanding Young Scientists Projects(Grant No.BJJWZYJH01201910005018)。
文摘Three-dimensional(3 D)topological insulators(TIs)are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is the key to the practical applications of TIs.Here we show that wafer-sized Bi2Te3 family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO2/Si substrates by magnetron cosputtering.The SiO2/Si substrates enable us to electrically tune(Bi1-xSbx)2Te3 and Cr-doped(Bi1-xSbx)2 Te3 TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states,such as the quantum anomalous Hall effect(QAHE).This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.
基金This work was supported by the National Natural Science Foundation of China(51490680,51490683).
文摘Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response and high-accuracy voltage source converters.This paper models its primary circuit and addresses its basic operation mechanism.Then a dual-timescale control scheme is investigated to realize the coordinated regulation of both types of converter.A simulation case is established in PSCAD containing interconnected mid-voltage distribution networks.Simulations with poor-and well-matched control timescales are both carried out.And accordingly,the power flow controllability under these conditions is compared.When the shorter control timescale is no more than tenth of the longer one,the power electronic zigzag transformer will operate with satisfying performances.
文摘The Discrete Variational Xα Method DV-Xα with an embeded cluster scheme was used to investigate electronic structure, energy levels, charge distribution and chemical bonding in p-type thermoelectric ceramics :Sb2Te3-Bi2Te3-Sb2Se3. The results obtained are in agreement with experiment ones, which are instructive to material design.