The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irrad...The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.展开更多
Nano silicon particles can be become nano fibre under low energy electron beam bombarding. The formation of the nano silicon fibre include two stages. At first, on the nano silicon particle surface many ...Nano silicon particles can be become nano fibre under low energy electron beam bombarding. The formation of the nano silicon fibre include two stages. At first, on the nano silicon particle surface many silicon atoms are gasified, then these silicon atoms deposit in the place where have more charge on account of the static electrical absorption and the point effect of the charge accumulation , these atoms grow into non crystalline silicon fibres. The second stage is the non crystalline silicon fibres crystallizing. Its crystallizing temperature is about 180℃. The growth mechanism of the nano silicon fibre is vapour solid mode.展开更多
The successive alteration o the microstructure from the weld metal zone through weld bond to the heat affected zone of a Cr18Ni13 austenitic-0.45%C steels weld joint was observed in situ using transmission electron mi...The successive alteration o the microstructure from the weld metal zone through weld bond to the heat affected zone of a Cr18Ni13 austenitic-0.45%C steels weld joint was observed in situ using transmission electron microscopy.It was found a new type of microstructure called pearlite-like structure and observed the characteristics of the boundary of dissimilar phases. Based on the definition of various zones of the dissimilar steels weld joint under the optical mi- croscope,the transmission electron microscopic characteristics,including microstructures and compositions,of each zone are described and discussed.展开更多
Formation of the dislocation hoe zone(DFZ),and initiation and propagation of microcracks have been investigated by in situ transmission electron microscope(TEM)tensile test for NiAlFe intermetallics.When TEM foils are...Formation of the dislocation hoe zone(DFZ),and initiation and propagation of microcracks have been investigated by in situ transmission electron microscope(TEM)tensile test for NiAlFe intermetallics.When TEM foils are strained,a great number of dislocations are found to emit from a crack tip during microcrack propagation and drive out of the crack tip area,leaving behind a DFZ.The maximum normal stress exists in the DFZ, thus nanocracks initiate discontinuously ahead of the crack tip in the highly stressed DFZ. Connection of the main crack and nanocracks results in steady propagation of cracks.Cleavage fracture and bluntness of the crack tip indicate that propagation of the crack is a leaping process. The second phase in the NiAlFe alloy obstructs propagation of the crack, which results in deviation of the crack path.展开更多
The microstructural evolution of purity Pd under 30 keV He^(+)irradiation at 573 K was investigated by in-situ transmission electron microscopy.The nucleation,growth,merging,annihilation,size change,number density var...The microstructural evolution of purity Pd under 30 keV He^(+)irradiation at 573 K was investigated by in-situ transmission electron microscopy.The nucleation,growth,merging,annihilation,size change,number density variation,and types of dislocation loops were analyzed under the influence of irradiation fluence and sample thickness.Both perfect dislocation loops with b=1/2<110>and faulted dislocation loops with b=1/3<111>were formed.However,at low irradiation fluence,most of the loops were 1/3<111>loops.The thickness of TEM foil obviously affected the ratio of 1/3<111>loop variants,the size and number density of dislocation loops,and the characteristics of bubble-loop complexes.With the increase of irradiation fluence,the size of dislocation loops increased,but loop volume number density remained almost constant until dislocation loops merged and evolved into dislocation network.There was an obvious interaction between dislocation loops and bubbles,indicating that 1/3<111>loop was first formed at the initial stage of irradiation,and when the loop grew to a certain size,obvious helium bubbles appeared inside its region.展开更多
Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxid...Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.展开更多
The observation on emitting dislocations from grain boundaries by TEM during Cu elongation has been performed. It is shown that there exists the 'ledge' at the grain boundaries in fee pure Cu, which is able to...The observation on emitting dislocations from grain boundaries by TEM during Cu elongation has been performed. It is shown that there exists the 'ledge' at the grain boundaries in fee pure Cu, which is able to emit dislocations into grain under action of stress.展开更多
Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is ...Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.展开更多
Ion irradiation is usually used to simulate neutron irradiation to accelerate the evaluation of the irradia-tion behavior of reactor materials.However,the validity of using a high damage rate of ion irradiation to sim...Ion irradiation is usually used to simulate neutron irradiation to accelerate the evaluation of the irradia-tion behavior of reactor materials.However,the validity of using a high damage rate of ion irradiation to simulate a low damage rate of neutron irradiation has always been a controversial topic.Here,the effect of two dose rates(2.94×10^(-6) and 7.35×10^(-5) dpa s^(-1))on the characteristics and evolution of dislo-cation loops in palladium was studied in situ during 30 keV H2+irradiation using transmission electron microscopy.The dose rate obviously affected the nucleation rate and growth rate of dislocation loops,the types(Frank loops or perfect loops)of dislocation loops,and the irradiation hardening and total damage obtained from the product of average loop size and loop density.At the same irradiation dose,a high dose rate would lead to high loop density,small average loop size,low loop growth rate,and low irra-diation hardening and damage induced by loops in pure Pd.Meanwhile,it was found for the first time that a high dose rate was beneficial to the generation of perfect dislocation loops.The effect of dose rate was attributed to the different dynamic equilibrium results between the effective generation rate of point defects and their absorption rate by existing sinks.The present results show that the effect of dose rate should be considered when using ion irradiation to simulate neutron irradiation to evaluate the irradiation damage to materials.展开更多
The synergistic evolution mechanisms of He bubbles and dislocation loops under 30 keV H_(2)^(+)&He^(+)dual-beam ions irradiation at 650℃ in the Ni-based alloy GH3535,which is the most promising candidate structur...The synergistic evolution mechanisms of He bubbles and dislocation loops under 30 keV H_(2)^(+)&He^(+)dual-beam ions irradiation at 650℃ in the Ni-based alloy GH3535,which is the most promising candidate structure material for molten salt reactors(MSRs),were revealed via in-situ TEM.The nucleation,merg-ing,and change in the size of the dislocation loops and He bubbles were characterized in detail to study the influences of irradiation fluence and pre-existing dislocation loops on their evolutions.The number density of both the He bubbles and dislocation loops increases rapidly and subsequently saturates,whereas their size continuously increases with the increasing ion fluence.Pre-existing dislocation loops with strong absorption characteristics grow preferentially and suppress the nucleation of dislocation loops during the dual-beam ions irradiation.Moreover,the bubbles tend to nucleate within the dislocation loops to form bubble-loop complexes,and then decrease in their number density.The details of the un-faulting processes of the Frank loops were discussed,where the energy difference between the two types of loops as well as the evolution of the inside Shockley dislocation loops dominates the unfaulting be-havior.The several evolution stages of the loop-punching mechanism are revealed,and the emitted loops can directly form perfect loops as well as unfault the neighboring Frank loops.The He bubbles inside the loops provide corresponding stress for the formation of rhombic loops,which can achieve rapid growth and sweep ability by merging with the neighboring loops.Additionally,its dissociation to Shockley dis-location can unfault the Frank loops along their slip direction.Among the four Frank loop variations,the edge-on Frank loop variations have the highest growth rate,followed by the perfect loop.The related mechanisms based on in-situ experimental observation are discussed in depth.展开更多
Three different kinds of rare-earth metal phthalocyanine complexes(Pc_2LuH,Pc_3Gd_2, R_(12) Pc_3Dy_2)were synthesized.Their ultra-thin films were prepared by the Langmuir-Blodgett techni- que.Crystallites were observe...Three different kinds of rare-earth metal phthalocyanine complexes(Pc_2LuH,Pc_3Gd_2, R_(12) Pc_3Dy_2)were synthesized.Their ultra-thin films were prepared by the Langmuir-Blodgett techni- que.Crystallites were observed in Langmuir film of Pc_3Gd_2 by means of transmission electron micros- copy.The limiting molecular areas of the phthalocyanine derivatives on pure water increased in the order mono-,di-and triphthalocyanine,implying that these phthalocyanine molecules are stacked with a face-to-face orientation and edge-on to the water surface.By using scanning tunneling mic- roscopy individual molecules of lutetium diphthalocyanine adsorbed on graphite surfaces were imaged for the first time.展开更多
Through in-situ TEM observation during 30 keV H_(2)^(+)-He^(+) dual-beam irradiation at 723 K,the reaction and transformation of dislocation loops in pure Mo were investigated,especially for<100>loops.Irradiatio...Through in-situ TEM observation during 30 keV H_(2)^(+)-He^(+) dual-beam irradiation at 723 K,the reaction and transformation of dislocation loops in pure Mo were investigated,especially for<100>loops.Irradiation could directly cause the formation of 1/2<111>loops and<100>loops,but 1/2<111>loops were dominant.In-situ observation confirmed the formation mechanism of<100>loops,including direct irradiation induced mechanism,1/2<111>loop direct conversion mechanism,and reaction mechanism of two 1/2<111>loops.Meanwhile,the reaction of two 1/2<111>loops to produce<100>loop should not require the strict size similarity condition.The reaction between 1/2<111>loops could also produce 1/2<111>loop,which was essentially a process in which one loop absorbed another one.The yield strength increment caused by irradiation-induced loops was analyzed,and its saturation value reached0.48 GPa at 0.06 dpa.Compared with single He+irradiation,the number density and average diameter of loops increased significantly and more serious damage was caused under the synergistic effect of hydrogen and helium.The mechanism based on in-situ experimental observation was discussed in depth.展开更多
Aiming at overcoming the strength-ductility trade-off in structural Ti-alloys,a new family of TRIP/TWIP Ti-alloys was developed in the past decade(TWIP:twinning-induced plasticity;TRIP:transformationinduced plasticity...Aiming at overcoming the strength-ductility trade-off in structural Ti-alloys,a new family of TRIP/TWIP Ti-alloys was developed in the past decade(TWIP:twinning-induced plasticity;TRIP:transformationinduced plasticity).Herein,we study the tunable nature of deformation mechanisms with various TWIP and TRIP contributions by fine adjustment of the Zr content on ternary Ti-12 Mo-xZr(x=3,6,10)alloys.The microstructure and deformation mechanisms of the Ti-Mo-Zr alloys are explored by using in-situ electron backscatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that a transition of the dominant deformation mode occurred,going from TRIP to TWIP major mechanism with increasing Zr content.In the Ti-12 Mo-3 Zr alloy,the stress-induced martensitic transformation(SIM)is the major deformation mode which accommodates the plastic flow.Regarding the Ti-12 Mo-6 Zr alloy,the combined deformation twinning(DT)and SIM modes both contribute to the overall plasticity with enhanced strain-hardening rate and subsequent large uniform ductility.Further increase of the Zr content in Ti-12 Mo-10 Zr alloy leads to an improved yield stress involving single DT mode as a dominant deformation mechanism throughout the plastic regime.In the present work,a set of comprehensive in-situ and ex-situ microstructural investigations clarify the evolution of deformation microstructures during tensile loading and unloading processes.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1967211,U1832112,and 11975191).
文摘The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.
文摘Nano silicon particles can be become nano fibre under low energy electron beam bombarding. The formation of the nano silicon fibre include two stages. At first, on the nano silicon particle surface many silicon atoms are gasified, then these silicon atoms deposit in the place where have more charge on account of the static electrical absorption and the point effect of the charge accumulation , these atoms grow into non crystalline silicon fibres. The second stage is the non crystalline silicon fibres crystallizing. Its crystallizing temperature is about 180℃. The growth mechanism of the nano silicon fibre is vapour solid mode.
文摘The successive alteration o the microstructure from the weld metal zone through weld bond to the heat affected zone of a Cr18Ni13 austenitic-0.45%C steels weld joint was observed in situ using transmission electron microscopy.It was found a new type of microstructure called pearlite-like structure and observed the characteristics of the boundary of dissimilar phases. Based on the definition of various zones of the dissimilar steels weld joint under the optical mi- croscope,the transmission electron microscopic characteristics,including microstructures and compositions,of each zone are described and discussed.
文摘Formation of the dislocation hoe zone(DFZ),and initiation and propagation of microcracks have been investigated by in situ transmission electron microscope(TEM)tensile test for NiAlFe intermetallics.When TEM foils are strained,a great number of dislocations are found to emit from a crack tip during microcrack propagation and drive out of the crack tip area,leaving behind a DFZ.The maximum normal stress exists in the DFZ, thus nanocracks initiate discontinuously ahead of the crack tip in the highly stressed DFZ. Connection of the main crack and nanocracks results in steady propagation of cracks.Cleavage fracture and bluntness of the crack tip indicate that propagation of the crack is a leaping process. The second phase in the NiAlFe alloy obstructs propagation of the crack, which results in deviation of the crack path.
基金financially supported by the Fund of Science and Technology on Surface Physics and Chemistry Laboratory(No.JZX7Y201901SY00900101)the National Natural Science Foundation of China(Nos.11975191,U1832112 and U1967211)。
文摘The microstructural evolution of purity Pd under 30 keV He^(+)irradiation at 573 K was investigated by in-situ transmission electron microscopy.The nucleation,growth,merging,annihilation,size change,number density variation,and types of dislocation loops were analyzed under the influence of irradiation fluence and sample thickness.Both perfect dislocation loops with b=1/2<110>and faulted dislocation loops with b=1/3<111>were formed.However,at low irradiation fluence,most of the loops were 1/3<111>loops.The thickness of TEM foil obviously affected the ratio of 1/3<111>loop variants,the size and number density of dislocation loops,and the characteristics of bubble-loop complexes.With the increase of irradiation fluence,the size of dislocation loops increased,but loop volume number density remained almost constant until dislocation loops merged and evolved into dislocation network.There was an obvious interaction between dislocation loops and bubbles,indicating that 1/3<111>loop was first formed at the initial stage of irradiation,and when the loop grew to a certain size,obvious helium bubbles appeared inside its region.
基金supported by the National Natural Science Foundation of China(22075147 and 22179063)。
文摘Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.
文摘The observation on emitting dislocations from grain boundaries by TEM during Cu elongation has been performed. It is shown that there exists the 'ledge' at the grain boundaries in fee pure Cu, which is able to emit dislocations into grain under action of stress.
基金supported by the opening fund of National Key Research and Development Program of China(No.2020YFE0205300)Key Laboratory of Science and Technology on Silicon Devices,Chinese Academy of Sciences(No.KLSDTJJ2022-5)+1 种基金Chongqing Natural Science Foundation of China(No.cstc2021jcyj-msxmX1002)the Fundamental Research Funds for the Central Universities(No.AUGA5710051221).
文摘Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.12225506)the National Natural Science Foundation of China (Grant No.U1967211 and 11975191)the National MCF Energy R&D Program (Grant No.2022YFE03110000).
文摘Ion irradiation is usually used to simulate neutron irradiation to accelerate the evaluation of the irradia-tion behavior of reactor materials.However,the validity of using a high damage rate of ion irradiation to simulate a low damage rate of neutron irradiation has always been a controversial topic.Here,the effect of two dose rates(2.94×10^(-6) and 7.35×10^(-5) dpa s^(-1))on the characteristics and evolution of dislo-cation loops in palladium was studied in situ during 30 keV H2+irradiation using transmission electron microscopy.The dose rate obviously affected the nucleation rate and growth rate of dislocation loops,the types(Frank loops or perfect loops)of dislocation loops,and the irradiation hardening and total damage obtained from the product of average loop size and loop density.At the same irradiation dose,a high dose rate would lead to high loop density,small average loop size,low loop growth rate,and low irra-diation hardening and damage induced by loops in pure Pd.Meanwhile,it was found for the first time that a high dose rate was beneficial to the generation of perfect dislocation loops.The effect of dose rate was attributed to the different dynamic equilibrium results between the effective generation rate of point defects and their absorption rate by existing sinks.The present results show that the effect of dose rate should be considered when using ion irradiation to simulate neutron irradiation to evaluate the irradiation damage to materials.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063).The authors would like to thank the assis-tance of the Xiamen Multiple Ion Beam In-situ TEM Analysis Facility.
文摘The synergistic evolution mechanisms of He bubbles and dislocation loops under 30 keV H_(2)^(+)&He^(+)dual-beam ions irradiation at 650℃ in the Ni-based alloy GH3535,which is the most promising candidate structure material for molten salt reactors(MSRs),were revealed via in-situ TEM.The nucleation,merg-ing,and change in the size of the dislocation loops and He bubbles were characterized in detail to study the influences of irradiation fluence and pre-existing dislocation loops on their evolutions.The number density of both the He bubbles and dislocation loops increases rapidly and subsequently saturates,whereas their size continuously increases with the increasing ion fluence.Pre-existing dislocation loops with strong absorption characteristics grow preferentially and suppress the nucleation of dislocation loops during the dual-beam ions irradiation.Moreover,the bubbles tend to nucleate within the dislocation loops to form bubble-loop complexes,and then decrease in their number density.The details of the un-faulting processes of the Frank loops were discussed,where the energy difference between the two types of loops as well as the evolution of the inside Shockley dislocation loops dominates the unfaulting be-havior.The several evolution stages of the loop-punching mechanism are revealed,and the emitted loops can directly form perfect loops as well as unfault the neighboring Frank loops.The He bubbles inside the loops provide corresponding stress for the formation of rhombic loops,which can achieve rapid growth and sweep ability by merging with the neighboring loops.Additionally,its dissociation to Shockley dis-location can unfault the Frank loops along their slip direction.Among the four Frank loop variations,the edge-on Frank loop variations have the highest growth rate,followed by the perfect loop.The related mechanisms based on in-situ experimental observation are discussed in depth.
文摘Three different kinds of rare-earth metal phthalocyanine complexes(Pc_2LuH,Pc_3Gd_2, R_(12) Pc_3Dy_2)were synthesized.Their ultra-thin films were prepared by the Langmuir-Blodgett techni- que.Crystallites were observed in Langmuir film of Pc_3Gd_2 by means of transmission electron micros- copy.The limiting molecular areas of the phthalocyanine derivatives on pure water increased in the order mono-,di-and triphthalocyanine,implying that these phthalocyanine molecules are stacked with a face-to-face orientation and edge-on to the water surface.By using scanning tunneling mic- roscopy individual molecules of lutetium diphthalocyanine adsorbed on graphite surfaces were imaged for the first time.
基金supported by the National Natural Science Foundation of China(Grant No.11975191,U1832112 and U1967211)。
文摘Through in-situ TEM observation during 30 keV H_(2)^(+)-He^(+) dual-beam irradiation at 723 K,the reaction and transformation of dislocation loops in pure Mo were investigated,especially for<100>loops.Irradiation could directly cause the formation of 1/2<111>loops and<100>loops,but 1/2<111>loops were dominant.In-situ observation confirmed the formation mechanism of<100>loops,including direct irradiation induced mechanism,1/2<111>loop direct conversion mechanism,and reaction mechanism of two 1/2<111>loops.Meanwhile,the reaction of two 1/2<111>loops to produce<100>loop should not require the strict size similarity condition.The reaction between 1/2<111>loops could also produce 1/2<111>loop,which was essentially a process in which one loop absorbed another one.The yield strength increment caused by irradiation-induced loops was analyzed,and its saturation value reached0.48 GPa at 0.06 dpa.Compared with single He+irradiation,the number density and average diameter of loops increased significantly and more serious damage was caused under the synergistic effect of hydrogen and helium.The mechanism based on in-situ experimental observation was discussed in depth.
基金supported by National Natural Science foundation of China(Grant No.51601216 and 51901193)China Postdoctoral Science Foundation(Grant No.2018M632414)+4 种基金Fund of State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing(Grant No.2019-ZD03)Fundamental Research Funds for the Central Universities(Grant No.2017XKQY009)Funds of Industry-University-Research Cooperation in Jiangsu Province(Grand No.BY2018075)Key Research and Development Program of Shaanxi(Grant No.2019GY-151)sponsored by China Scholarship Council。
文摘Aiming at overcoming the strength-ductility trade-off in structural Ti-alloys,a new family of TRIP/TWIP Ti-alloys was developed in the past decade(TWIP:twinning-induced plasticity;TRIP:transformationinduced plasticity).Herein,we study the tunable nature of deformation mechanisms with various TWIP and TRIP contributions by fine adjustment of the Zr content on ternary Ti-12 Mo-xZr(x=3,6,10)alloys.The microstructure and deformation mechanisms of the Ti-Mo-Zr alloys are explored by using in-situ electron backscatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that a transition of the dominant deformation mode occurred,going from TRIP to TWIP major mechanism with increasing Zr content.In the Ti-12 Mo-3 Zr alloy,the stress-induced martensitic transformation(SIM)is the major deformation mode which accommodates the plastic flow.Regarding the Ti-12 Mo-6 Zr alloy,the combined deformation twinning(DT)and SIM modes both contribute to the overall plasticity with enhanced strain-hardening rate and subsequent large uniform ductility.Further increase of the Zr content in Ti-12 Mo-10 Zr alloy leads to an improved yield stress involving single DT mode as a dominant deformation mechanism throughout the plastic regime.In the present work,a set of comprehensive in-situ and ex-situ microstructural investigations clarify the evolution of deformation microstructures during tensile loading and unloading processes.