The superconducting toroidal field (TF) plays an important role in a superconducting tokamak, whose power supply was developed based on the feedback control principle. In this paper, superconducting tokamaks in diff...The superconducting toroidal field (TF) plays an important role in a superconducting tokamak, whose power supply was developed based on the feedback control principle. In this paper, superconducting tokamaks in different countries are described, and the TF power supply of the International Thermonuclear Experimental Reactor (ITER) is taken as an example to study the current-sharing characteristics in the current-stabilized stage. Firstly, the mathematical model of the TF power supply is established, and then the 3-loop control method is put forward for achieving the stability and reliability of current-stabilization and current-sharing. Furthermore, further studies indicate that the current-sharing controller has no influence on the current-stabilized control, and current-stabilizing and current-sharing can be realized at the same time. All the work done provides valuable references for the current-sharing design of the TF power supply for a superconducting tokamak, and all these studies lay a solid foundation for developing superconducting tokamaks.展开更多
J-TEXT, formerly TEXT-U at the University of Texas at Austin in USA, is a medium-sized tokamak at the Huazhong University of Science and Technology. The toroidal field (TF) power supply of this tokamak should provid...J-TEXT, formerly TEXT-U at the University of Texas at Austin in USA, is a medium-sized tokamak at the Huazhong University of Science and Technology. The toroidal field (TF) power supply of this tokamak should provide a current of 160 kA and a flat duration of 500 ms for the toroidal field coils to generate a maximum toroidal field of 3 T at the geometric center of the vaccum vessel. This paper presents a design of a new control system which takes the real-time feedback control option for the TF power supply operation. The system was tested successfully during the commissioning. In the first experimental campaign of J-TEXT, the system effectively controlled the power supply to provide a fiat current up to 92.5 kA and therein the TF produced reached 1.74 T, which enabled the machine to generate the first plasma successfully.展开更多
基金supported by the National Basic Research Program of China(973Program)(No.2007ID200)the Special Fund of Talent Development of Anhui Province(No.2009Z056)the Research Fund for the Doctoral Program of Anhui University of Architecture(No.K02425)
文摘The superconducting toroidal field (TF) plays an important role in a superconducting tokamak, whose power supply was developed based on the feedback control principle. In this paper, superconducting tokamaks in different countries are described, and the TF power supply of the International Thermonuclear Experimental Reactor (ITER) is taken as an example to study the current-sharing characteristics in the current-stabilized stage. Firstly, the mathematical model of the TF power supply is established, and then the 3-loop control method is put forward for achieving the stability and reliability of current-stabilization and current-sharing. Furthermore, further studies indicate that the current-sharing controller has no influence on the current-stabilized control, and current-stabilizing and current-sharing can be realized at the same time. All the work done provides valuable references for the current-sharing design of the TF power supply for a superconducting tokamak, and all these studies lay a solid foundation for developing superconducting tokamaks.
基金National Basic Research Program of China(973 Program)(No.2008CB717805)
文摘J-TEXT, formerly TEXT-U at the University of Texas at Austin in USA, is a medium-sized tokamak at the Huazhong University of Science and Technology. The toroidal field (TF) power supply of this tokamak should provide a current of 160 kA and a flat duration of 500 ms for the toroidal field coils to generate a maximum toroidal field of 3 T at the geometric center of the vaccum vessel. This paper presents a design of a new control system which takes the real-time feedback control option for the TF power supply operation. The system was tested successfully during the commissioning. In the first experimental campaign of J-TEXT, the system effectively controlled the power supply to provide a fiat current up to 92.5 kA and therein the TF produced reached 1.74 T, which enabled the machine to generate the first plasma successfully.