Equation based TCP-friendly rate control (TFRC) protocol has been proposed to support video streaming applications. In order to improve TFRC performance in wireless channels, the link level automatic repeat request (A...Equation based TCP-friendly rate control (TFRC) protocol has been proposed to support video streaming applications. In order to improve TFRC performance in wireless channels, the link level automatic repeat request (ARQ) scheme is usually deployed. However, ARQ cannot ensure strict delay guarantees, especially over multihop links. This paper introduces a theoretical model to deduce an equation for packet size adjustment in transport layer to minimize retransmission delay by taking into con- sideration the causative reasons inducing retransmission in link layer. An enhanced TFRC (ETFRC) scheme is proposed inte- grating TFRC with variable packet size policy. Simulation results demonstrate that higher goodput, lower packet loss rate (PLR), lower frame transmission delay and jitter with good fairness can be achieved by our proposed mechanism.展开更多
In this paper, a TCP-friendly rate control algorithm is proposed for storedMPEG2 layered video. In this algorithm, RTT is observed at the receiver through the use of probe APPpackets, and the control interval is chose...In this paper, a TCP-friendly rate control algorithm is proposed for storedMPEG2 layered video. In this algorithm, RTT is observed at the receiver through the use of probe APPpackets, and the control interval is chosen based on the self-similar nature of MPEG2 traffic . Inaddition, the estimated receiving rate is used as an indication to the network status when nopacket loss is detected . In our simulations, a friendliness of 0.94 is obtained, and the videoquality fluctuations are acceptable with this control algorithm.展开更多
In a hybrid wired-cum-wireless network environment, packet loss may happen because of congestion or wireless link errors. Therefore, differentiating the cause is important for helping transport protocols take actions ...In a hybrid wired-cum-wireless network environment, packet loss may happen because of congestion or wireless link errors. Therefore, differentiating the cause is important for helping transport protocols take actions to control congestion only when the loss is caused by congestion. In this article, an end-to-end loss differentiation mechanism is proposed to improve the transmission performance of transmission control protocol (TCP)-friendly rate control (TFRC) protocol. Its key design is the introduction of the outstanding machine learning algorithm - the support vector machine (SVM) into the network domain to perform multi-metric joint loss differentiation. The SVM is characterized by using end-to-end indicators for input, such as the relative one-way trip time and the inter-arrival time of packets fore-and-aft the loss, while requiring no support from intermediate network apparatus. Simulations are carried out to evaluate the loss differentiation algorithm with various network configurations, such as with different competing flows, wireless loss rate and queue size. The results show that the proposed classifier is effective under most scenarios, and that its performance is superior to the ZigZag, mBiaz and spike (ZBS) scheme.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60302004) and the Natural Science Foundation of HubeiProvince (No. 2005ABA264), China
文摘Equation based TCP-friendly rate control (TFRC) protocol has been proposed to support video streaming applications. In order to improve TFRC performance in wireless channels, the link level automatic repeat request (ARQ) scheme is usually deployed. However, ARQ cannot ensure strict delay guarantees, especially over multihop links. This paper introduces a theoretical model to deduce an equation for packet size adjustment in transport layer to minimize retransmission delay by taking into con- sideration the causative reasons inducing retransmission in link layer. An enhanced TFRC (ETFRC) scheme is proposed inte- grating TFRC with variable packet size policy. Simulation results demonstrate that higher goodput, lower packet loss rate (PLR), lower frame transmission delay and jitter with good fairness can be achieved by our proposed mechanism.
文摘In this paper, a TCP-friendly rate control algorithm is proposed for storedMPEG2 layered video. In this algorithm, RTT is observed at the receiver through the use of probe APPpackets, and the control interval is chosen based on the self-similar nature of MPEG2 traffic . Inaddition, the estimated receiving rate is used as an indication to the network status when nopacket loss is detected . In our simulations, a friendliness of 0.94 is obtained, and the videoquality fluctuations are acceptable with this control algorithm.
基金supported by the National Natural Science Foundation of China (60772114)
文摘In a hybrid wired-cum-wireless network environment, packet loss may happen because of congestion or wireless link errors. Therefore, differentiating the cause is important for helping transport protocols take actions to control congestion only when the loss is caused by congestion. In this article, an end-to-end loss differentiation mechanism is proposed to improve the transmission performance of transmission control protocol (TCP)-friendly rate control (TFRC) protocol. Its key design is the introduction of the outstanding machine learning algorithm - the support vector machine (SVM) into the network domain to perform multi-metric joint loss differentiation. The SVM is characterized by using end-to-end indicators for input, such as the relative one-way trip time and the inter-arrival time of packets fore-and-aft the loss, while requiring no support from intermediate network apparatus. Simulations are carried out to evaluate the loss differentiation algorithm with various network configurations, such as with different competing flows, wireless loss rate and queue size. The results show that the proposed classifier is effective under most scenarios, and that its performance is superior to the ZigZag, mBiaz and spike (ZBS) scheme.