The thermal decomposition of ammonium 3-nitro-1,2,4-triazol-5-onate monohydrate[NH4(NTO)·H2O] was studied by means of thermal analysis-MS coupling and the combination technique of in situ thermolysis cell with ...The thermal decomposition of ammonium 3-nitro-1,2,4-triazol-5-onate monohydrate[NH4(NTO)·H2O] was studied by means of thermal analysis-MS coupling and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy. The results show that there are two endothermic steps and one exothermic step in the decomposition process of NH4(NTO)·H2O. The detected gas products consist of NH3, H2O, N2, CO2, CO, and NO2.展开更多
The reaction activity of S Zorb sorbents with different sulfur contents was investigated, and the structure and composition of carbon-containing sorbents were characterized by XRD, FT-IR and TG-MS in order to delve in...The reaction activity of S Zorb sorbents with different sulfur contents was investigated, and the structure and composition of carbon-containing sorbents were characterized by XRD, FT-IR and TG-MS in order to delve into the kind and morphology of carbon on the sorbent. Test results have revealed that coke could be deposited on the S Zorb sorbent during the operating process, and the coke content was an important factor influencing the reaction performance of the S Zorb sorbent. Retention of a definite amount of coke on the sorbent while securing the desulfurization activity of the S Zorb sorbent would be conducive to the reduction of octane loss of reaction product.展开更多
The desulfurization efficiency and mechanism of the calcination of petroleum coke in ammonia atmosphere at lower than 1000 ℃ were investigated through a series of conditional experiments and comparison with other gas...The desulfurization efficiency and mechanism of the calcination of petroleum coke in ammonia atmosphere at lower than 1000 ℃ were investigated through a series of conditional experiments and comparison with other gases such as H_2. The topics of efficiency and reaction mechanism are usually discussed through investigation by means of the Fourier transform infrared spectroscopy(FT-IR), the Brunauer-Emmett-Teller(BET) technique, and the thermogravimetry coupled with the mass spectrometry(TG-MS). Results showed that in addition to H_2, ammonia not only could retain a high desulfurization rate but could also reduce coke loss during the desulfurization process of petroleum coke. The best desulfurization conditions covered a petroleum coke particle size of less than 0.1 mm, a calcination temperature of 800 ℃ in ammonia atmosphere with a flow rate of 10 L/h, and a heating duration of more than 120 min. Ammonia decomposition, H_2 generation, decline in the activation energy of the carbon–sulfur bonds, and petroleum coke with a largest specific surface area at 800 ℃ are the key goals of desulfurization studied thereby. As proved by TG-MS analysis, given a large quantity of H_2, ammonia can be decomposed at the same temperature to completely come into contact with the sulfur species in petroleum coke to generate H_2S.展开更多
文摘The thermal decomposition of ammonium 3-nitro-1,2,4-triazol-5-onate monohydrate[NH4(NTO)·H2O] was studied by means of thermal analysis-MS coupling and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy. The results show that there are two endothermic steps and one exothermic step in the decomposition process of NH4(NTO)·H2O. The detected gas products consist of NH3, H2O, N2, CO2, CO, and NO2.
文摘The reaction activity of S Zorb sorbents with different sulfur contents was investigated, and the structure and composition of carbon-containing sorbents were characterized by XRD, FT-IR and TG-MS in order to delve into the kind and morphology of carbon on the sorbent. Test results have revealed that coke could be deposited on the S Zorb sorbent during the operating process, and the coke content was an important factor influencing the reaction performance of the S Zorb sorbent. Retention of a definite amount of coke on the sorbent while securing the desulfurization activity of the S Zorb sorbent would be conducive to the reduction of octane loss of reaction product.
基金the National Natural Science Foundation of China(Projects No.51374253 and No.51574289)
文摘The desulfurization efficiency and mechanism of the calcination of petroleum coke in ammonia atmosphere at lower than 1000 ℃ were investigated through a series of conditional experiments and comparison with other gases such as H_2. The topics of efficiency and reaction mechanism are usually discussed through investigation by means of the Fourier transform infrared spectroscopy(FT-IR), the Brunauer-Emmett-Teller(BET) technique, and the thermogravimetry coupled with the mass spectrometry(TG-MS). Results showed that in addition to H_2, ammonia not only could retain a high desulfurization rate but could also reduce coke loss during the desulfurization process of petroleum coke. The best desulfurization conditions covered a petroleum coke particle size of less than 0.1 mm, a calcination temperature of 800 ℃ in ammonia atmosphere with a flow rate of 10 L/h, and a heating duration of more than 120 min. Ammonia decomposition, H_2 generation, decline in the activation energy of the carbon–sulfur bonds, and petroleum coke with a largest specific surface area at 800 ℃ are the key goals of desulfurization studied thereby. As proved by TG-MS analysis, given a large quantity of H_2, ammonia can be decomposed at the same temperature to completely come into contact with the sulfur species in petroleum coke to generate H_2S.