Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure tre...Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.展开更多
Background:EBV-miR-BARTs exhibit significant relevance in epithelial tumors,particularly in EBVassociated gastric and nasopharyngeal cancers.However,their specific mechanisms in the initiation and progression of gastr...Background:EBV-miR-BARTs exhibit significant relevance in epithelial tumors,particularly in EBVassociated gastric and nasopharyngeal cancers.However,their specific mechanisms in the initiation and progression of gastric cancer remain insufficiently explored.Material and Methods:Initially,EBV-miRNA-BART6-5p and its target gene SMAD4 expression were assessed in EBV-associated gastric cancer tissues and cell lines.Subsequent transfection induced overexpression of EBV-miRNA-BART6-5p in AGS and MKN-45,and downregulation in EBVpositive cells(SUN-719).The subsequent evaluation aimed to observe their impact on gastric cancer cell proliferation,migration,and glycolytic processes,with the TGF-β/SMAD4 signaling pathway value clarified using a TGF-βinhibitor.Results:EBV-miRNA-BART6-5p exhibits pronounced upregulation in EBV-associated gastric cancer tissues and EBV-positive cells,while its target gene SMAD4 demonstrates downregulated expression.Upregulation of it can promote the proliferation and migration of gastric cancer cells.Additionally,We found EBV-miRNA-BART6-5p promotes glycolysis of gastric cancer cells.Inhibition of the TGF-β/SMAD4 signaling pathway resulted in suppressed proliferation and migration of gastric cancer cells,concomitant with a diminished glycolytic capacity.Conclusion:In this study,we found that EBV-miRNA-BART6-5p can target SMAD4,effectively increasing glycolysis in gastric cancer cells by regulating the TGF-β/SMAD4 signaling pathway,thereby enhancing the proliferation and metastasis of gastric cancer cells.Our findings may offer new insights into the metabolic aspects of gastric cancer.展开更多
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie...The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
Objective To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages. Methods Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 ...Objective To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages. Methods Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 (CCK-8) was used to assay the viability of RAW264.7 cells. Western blot was used to detect the phosphorylation of PI3K p85. Results NPY treatment could promote TGF-β1 production and rapid phosphorylation of PI3K p85 in RAW264.7 cells via Y1 receptor. The elevated TGF-β 1 production induced by NPY could be abolished by wortrnannin pretreatment. Conclusion NPY may elicit TGF-β production in RAW264.7 cells via Y1 receptor, and the activated PI3K pathway may account for this effect.展开更多
激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在...激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在临床上取得一定疗效。即便如此,仍未能完整的从分子生物及细胞生物学角度阐明中药治疗SIONFH的作用机制。转化生长因子-β(TGF-β)/骨形态发生蛋白(BMP)/Smad信号通路的转导是防治SIONFH的研究热点之一,故该文阐明了该信号通路的转导机制以及与SIONFH的联系,检索了基于该通路治疗SIONFH的全部中药及复方并阐述其影响机制。基于中医对SIONFH的认识,现临床上使用补肝肾强筋骨以及活血祛瘀通络类的方药治疗SIONFH,且具有良好的疗效。中药通过调控该通路,可刺激骨髓间充质干细胞成骨分化,降低破骨细胞含量,减少脂肪生成,改善微循环,抗氧化损伤,促进股骨头内血管新生,从而促进股骨头损伤的修复。现基于TGF-β/BMP/Smad信号通路对中医药治疗SIONFH的研究进展做一综述,期许为中医药治疗SIONFH提供理论依据及参考。展开更多
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Dere...Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-β/ BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/ Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.展开更多
基金the China’s National Key Research and Development Program Projects(No.2022YFC3500500 and No.2022YFC3500502).
文摘Background: To explore the effects of electroacupuncture on cardiac function and myocardial fibrosis in rat models of heart failure, and to elucidate the underlying mechanism of electroacupuncture in heart failure treatment. Methods: Healthy male Sprague-Dawley rats were allocated into three groups: Sham group, Model group, and electroacupuncture (Model + EA) group, with each group comprising 8 rats. The model underwent a procedure involving the ligation of the left anterior descending coronary artery to induce a model of heart failure. The Model + EA group was used for 7 consecutive days for electroacupuncture of bilateral Shenmen (HT7) and Tongli (HT5), once a day for 30 min each time. Left ventricular parameters in rats were assessed using a small-animal ultrasound machine to analyze changes in left ventricular end-diastolic volume, left ventricular end-systolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. Serum interleukin-1β (IL-1β), cardiac troponin (cTn), and N-terminal brain natriuretic peptide precursor levels were measured using ELISA. Histopathological changes in rat myocardium were observed through HE staining, while collagen deposition in rat myocardial tissue was assessed using the Masson staining method. Picro sirius red staining, immunohistochemical staining, and RT-qPCR were utilized to distinguish between the various types of collagen deposition. The expression level of TGF-β1 and SMAD2/3/4/7 mRNA in rat myocardial tissues was determined using RT-qPCR. Additionally, western blot analysis was conducted to assess the protein expression levels of TGF-β1, SMAD3/7, and p-SMAD3 in rat myocardial tissues. Results: Compared with the Sham group, the left ventricular ejection fraction and left ventricular fractional shortening values of the Model group were significantly decreased (P < 0.01);the left ventricular end-diastolic volume and left ventricular end-systolic volume values were remarkably increased (P < 0.01);serum N-terminal brain natriuretic peptide precursor content was increased (P < 0.01);serum IL-1β and cTn levels were increased (P < 0.01);myocardial collagen volume fraction were increased (P < 0.01);and those of the expression of TGF-β1 and SMAD2/3/4 mRNA was increased (P < 0.01);the expression of SMAD7 mRNA was decreased (P < 0.01);the protein expression levels of TGF-β1, SMAD3, and p-Smad3 were increased (P < 0.01);the protein expression level of SMAD7 was decreased (P < 0.01) in the Model group. Compared to the Model group, the expression levels of the proteins TGF-β1, SMAD3, and p-Smad3 in myocardial tissue were found to be decreased (P < 0.01), and the expression level of the protein SMAD7 was found to be increased (P < 0.01) in the Model + EA group;the collagen volume fraction and deposition of type Ⅰ /Ⅲ collagen were decreased (P < 0.01) in the Model + EA group. Conclusion: Electroacupuncture alleviates myocardial fibrosis in rats with heart failure, and this effect is likely due to attributed to the modulation of the TGF-β1/Smads signaling pathway, which helps reduce collagen deposition in the extracellular matrix.
基金supported by National Health Commission Key Laboratory of Gastrointestinal Tumour Diagnosis and Treatment 2022 Master/Postdoctoral Fund Project(NHCDP2022005)Gansu Provincial Science and Technology Department Joint Scientific Research Fund Project(23JRRA1545)+1 种基金Gansu Provincial Hospital Intra-Hospital Research Fund Project(22GSYYD-37)International Co-Operation Project of Gansu Provincial Science and Technology Department(No.20YF8WA096).
文摘Background:EBV-miR-BARTs exhibit significant relevance in epithelial tumors,particularly in EBVassociated gastric and nasopharyngeal cancers.However,their specific mechanisms in the initiation and progression of gastric cancer remain insufficiently explored.Material and Methods:Initially,EBV-miRNA-BART6-5p and its target gene SMAD4 expression were assessed in EBV-associated gastric cancer tissues and cell lines.Subsequent transfection induced overexpression of EBV-miRNA-BART6-5p in AGS and MKN-45,and downregulation in EBVpositive cells(SUN-719).The subsequent evaluation aimed to observe their impact on gastric cancer cell proliferation,migration,and glycolytic processes,with the TGF-β/SMAD4 signaling pathway value clarified using a TGF-βinhibitor.Results:EBV-miRNA-BART6-5p exhibits pronounced upregulation in EBV-associated gastric cancer tissues and EBV-positive cells,while its target gene SMAD4 demonstrates downregulated expression.Upregulation of it can promote the proliferation and migration of gastric cancer cells.Additionally,We found EBV-miRNA-BART6-5p promotes glycolysis of gastric cancer cells.Inhibition of the TGF-β/SMAD4 signaling pathway resulted in suppressed proliferation and migration of gastric cancer cells,concomitant with a diminished glycolytic capacity.Conclusion:In this study,we found that EBV-miRNA-BART6-5p can target SMAD4,effectively increasing glycolysis in gastric cancer cells by regulating the TGF-β/SMAD4 signaling pathway,thereby enhancing the proliferation and metastasis of gastric cancer cells.Our findings may offer new insights into the metabolic aspects of gastric cancer.
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
基金supported by Yuan Du Scholars,Clinical Research Center of Affiliated Hospital of Shandong Second Medical University,No.2022WYFYLCYJ02Weifang Key Laboratory,Weifang Science and Technology Development Plan Project Medical Category,No.2022YX093.
文摘The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
文摘Objective To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages. Methods Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 (CCK-8) was used to assay the viability of RAW264.7 cells. Western blot was used to detect the phosphorylation of PI3K p85. Results NPY treatment could promote TGF-β1 production and rapid phosphorylation of PI3K p85 in RAW264.7 cells via Y1 receptor. The elevated TGF-β 1 production induced by NPY could be abolished by wortrnannin pretreatment. Conclusion NPY may elicit TGF-β production in RAW264.7 cells via Y1 receptor, and the activated PI3K pathway may account for this effect.
文摘激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SIONFH)是由于糖皮质激素使用不当或过度而引起的髋关节疾病,发病机制尚未统一,临床疗效亦不佳。当前,没有效果明确的药物可以延缓疾病进程,而中医药治疗SIONFH在临床上取得一定疗效。即便如此,仍未能完整的从分子生物及细胞生物学角度阐明中药治疗SIONFH的作用机制。转化生长因子-β(TGF-β)/骨形态发生蛋白(BMP)/Smad信号通路的转导是防治SIONFH的研究热点之一,故该文阐明了该信号通路的转导机制以及与SIONFH的联系,检索了基于该通路治疗SIONFH的全部中药及复方并阐述其影响机制。基于中医对SIONFH的认识,现临床上使用补肝肾强筋骨以及活血祛瘀通络类的方药治疗SIONFH,且具有良好的疗效。中药通过调控该通路,可刺激骨髓间充质干细胞成骨分化,降低破骨细胞含量,减少脂肪生成,改善微循环,抗氧化损伤,促进股骨头内血管新生,从而促进股骨头损伤的修复。现基于TGF-β/BMP/Smad信号通路对中医药治疗SIONFH的研究进展做一综述,期许为中医药治疗SIONFH提供理论依据及参考。
文摘Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-β/ BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/ Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.