Terahertz communication technology can provide abundant frequency resources,strong confidentiality,antijamming capability,communication tracking capability and the ability to achieve highspeed data transmissions and c...Terahertz communication technology can provide abundant frequency resources,strong confidentiality,antijamming capability,communication tracking capability and the ability to achieve highspeed data transmissions and can serve as an important technical method for high-speed communications in the future.Among these terahertz communication technologies,terahertz direct modulation technology is a key means to achieve low system complexity and power consumption.In this paper,a review and outlook of terahertz direct modulation technology are proposed from the aspects of high-electron-mobilitytransistor-based terahertz direct modulation,parallelswitch terahertz direct modulation,diode-based terahertz direct modulation,quantum cascade laser-based terahertz direct modulation and new-material-based terahertz direct modulation.We hope through this paper that more readers can gain knowledge about the development and challenges of terahertz direct modulation technology for high-speed communication systems,thus promoting the development of high-speed terahertz communication technology based on direct modulation.展开更多
The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. ...The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Г valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality: with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.展开更多
基金the The National Key Research and Development Program of China under Contract No.2018YFB1801503National Natural Science Foundation of China under Contract Nos.61931006,61921002,61771327,61927813,61775229,61991430 and 62022022.
文摘Terahertz communication technology can provide abundant frequency resources,strong confidentiality,antijamming capability,communication tracking capability and the ability to achieve highspeed data transmissions and can serve as an important technical method for high-speed communications in the future.Among these terahertz communication technologies,terahertz direct modulation technology is a key means to achieve low system complexity and power consumption.In this paper,a review and outlook of terahertz direct modulation technology are proposed from the aspects of high-electron-mobilitytransistor-based terahertz direct modulation,parallelswitch terahertz direct modulation,diode-based terahertz direct modulation,quantum cascade laser-based terahertz direct modulation and new-material-based terahertz direct modulation.We hope through this paper that more readers can gain knowledge about the development and challenges of terahertz direct modulation technology for high-speed communication systems,thus promoting the development of high-speed terahertz communication technology based on direct modulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574105,61475054,61405063,and 61177095)the Hubei Science and Technology Agency Project,China(Grant No.2015BCE052)the Fundamental Research Funds for the Central Universities,China(Grant No.2017KFYXJJ029)
文摘The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Г valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality: with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.