An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the...An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge.展开更多
A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that proces...A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.展开更多
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state ...The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.展开更多
Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time interval and an u...Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time interval and an upper limit of the energy interval which can be admitted in a quantum transition process. Moreover, for the low energy excitations, the transition time between the levels is found to be close to the oscillation time periods characteristic for these levels. A reference obtained among the transition time Δt, transition energy ΔE and the Planck constant h indicates that Δt should approach approximately the time period of the electromagnetic wave produced in course of the transition.展开更多
Under the non-Lipschitzian condition, a small time large deviation principle of diffusion processes on Hilbert spaces is established. The operator theory and Gronwall inequality play an important role.
Objective:To summarize the wound care experience of a patient with hip trauma caused by a car accident.Methods:Under the guidance of the“TIME”principle,we uesd new dressings to treat contaminated wounds and observed...Objective:To summarize the wound care experience of a patient with hip trauma caused by a car accident.Methods:Under the guidance of the“TIME”principle,we uesd new dressings to treat contaminated wounds and observed,record the effect.Results:The initial dressing change for the pressure ulcer wound was on 2nd August,the red tissue was on the wound,and the wound area was about 16 cm×20 cm.We changed the dressing on 11th August,the color of the wound turned to pink,its area was about 13 cm×13 cm,and it was already healed at that time.Conclusion:Under the guidance of the“TIME”principle of wound management,the treatment of contaminated wounds with new dressing treatment was effective,which reduced the patient’s pain and improved the patient’s quality of life.展开更多
In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In o...In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In order to construct a necessary and sufficient condition for the existence result, the method of iterative technique will be used. As an application, an example is given to illustrate our main result.展开更多
文摘An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge.
文摘A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.
文摘The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.
文摘Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time interval and an upper limit of the energy interval which can be admitted in a quantum transition process. Moreover, for the low energy excitations, the transition time between the levels is found to be close to the oscillation time periods characteristic for these levels. A reference obtained among the transition time Δt, transition energy ΔE and the Planck constant h indicates that Δt should approach approximately the time period of the electromagnetic wave produced in course of the transition.
基金Supported by the National Basic Research Program of China (973 Program,Grant No.2007CB814901)the National Natural Science Foundation of China (Grant No.10826098)+1 种基金the Natural Science Foundation of Anhui Province (Grant No.090416225)Anhui Natural Science Foundation of Universities (Grant No.KJ2010A037)
文摘Under the non-Lipschitzian condition, a small time large deviation principle of diffusion processes on Hilbert spaces is established. The operator theory and Gronwall inequality play an important role.
文摘Objective:To summarize the wound care experience of a patient with hip trauma caused by a car accident.Methods:Under the guidance of the“TIME”principle,we uesd new dressings to treat contaminated wounds and observed,record the effect.Results:The initial dressing change for the pressure ulcer wound was on 2nd August,the red tissue was on the wound,and the wound area was about 16 cm×20 cm.We changed the dressing on 11th August,the color of the wound turned to pink,its area was about 13 cm×13 cm,and it was already healed at that time.Conclusion:Under the guidance of the“TIME”principle of wound management,the treatment of contaminated wounds with new dressing treatment was effective,which reduced the patient’s pain and improved the patient’s quality of life.
基金Supported by NNSF of China(11201213,11371183)NSF of Shandong Province(ZR2010AM022,ZR2013AM004)+2 种基金the Project of Shandong Provincial Higher Educational Science and Technology(J15LI07)the Project of Ludong University High-Quality Curriculum(20130345)the Teaching Reform Project of Ludong University in 2014(20140405)
文摘In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In order to construct a necessary and sufficient condition for the existence result, the method of iterative technique will be used. As an application, an example is given to illustrate our main result.