The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48...The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.展开更多
Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Elect...Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly. The CN x thin film, with the thickness of 1.27μm was deposited on the silicon micro\|tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X\|ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CN x thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm 2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CN x thin films are likely to be good field emission cathode. The preparation and the characterization of the samples were discussed in detail.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10574112, and the Natural Science Foundation of Henan Province under Grant No 411011800.
文摘The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.
文摘Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly. The CN x thin film, with the thickness of 1.27μm was deposited on the silicon micro\|tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X\|ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CN x thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm 2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CN x thin films are likely to be good field emission cathode. The preparation and the characterization of the samples were discussed in detail.