对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数...对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数估计(total least squares-estimation of signal parameters via rotational invariancete chniques,TLS-ESPRIT)可以很好地实现振荡信号的检测与识别。对于输入信号,首先采用模极大值小波域检测振荡发生的起始时刻和终止时刻,然后利用振荡时间间隔内的信号建立观测空间矩阵,通过奇异值分解和总体最小二乘法实现特征值截尾,将采样信号观测空间分解为信号子空间和噪声子空间,得到振荡信号每个构成频率分量的相应参数。仿真结果证实了所提出方法的可行性。展开更多
最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法...最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.展开更多
文摘对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数估计(total least squares-estimation of signal parameters via rotational invariancete chniques,TLS-ESPRIT)可以很好地实现振荡信号的检测与识别。对于输入信号,首先采用模极大值小波域检测振荡发生的起始时刻和终止时刻,然后利用振荡时间间隔内的信号建立观测空间矩阵,通过奇异值分解和总体最小二乘法实现特征值截尾,将采样信号观测空间分解为信号子空间和噪声子空间,得到振荡信号每个构成频率分量的相应参数。仿真结果证实了所提出方法的可行性。
文摘最大均值差异(Maximum mean discrepancy,MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而,MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此,本文通过引入局部加权均值的方法和理论到MMD中,提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy,PMLWD)度量,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework,LDAF),在LDAF框架下,衍生出两种领域适应学习方法:LDAF MLC和LDAF SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.