This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is p...This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10975036 and 61071018)the Guangxi Natural Science Foundation,China (Grant No. 2010GXNSFB013049)
文摘This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.