Zhuo et al looked into the part of transmembrane 9 superfamily member 1(TM9SF1)in bladder cancer(BC),and evaluated if it can be used as a therapeutic target.They created a permanent BC cell line and tested the effects...Zhuo et al looked into the part of transmembrane 9 superfamily member 1(TM9SF1)in bladder cancer(BC),and evaluated if it can be used as a therapeutic target.They created a permanent BC cell line and tested the effects of TM9SF1 overexpression and suppression on BC cell growth,movement,invasion,and cell cycle advancement.Their results show that TM9SF1 can boost the growth,movement,and invasion of BC cells and their access into the G2/M stage of the cell cycle.This research gives a novel direction and concept for targeted therapy of BC.展开更多
BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained...BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained unchanged for decades,which seriously affects the quality of patient survival.To improve the survival rate and prognosis of BC patients,it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention.Transmembrane 9 superfamily member 1(TM9SF1),also known as MP70 and HMP70,is a member of a family of nine transmembrane superfamily proteins,which was first identified in 1997.TM9SF1 can be expressed in BC,but its biological function and mechanism in BC are not clear.AIM To investigate the biological function and mechanism of TM9SF1 in BC.Overexpression of TM9SF1 increased the in vitro proliferation,migration,and invasion of BC cells by promoting the entry of BC cells into the G2/M phase.Silencing of TM9SF1 inhibited in vitro proliferation,migration,and invasion of BC cells and blocked BC cells in the G1 phase.CONCLUSION TM9SF1 may be an oncogene in BC.展开更多
OBJECTIVE We aimed identification of cell surface molecules, which might serve as diagnostic biomarkers or useful targets for therapies, in breast cancer. METHODS We developed unique DNA microarray coupled with spheri...OBJECTIVE We aimed identification of cell surface molecules, which might serve as diagnostic biomarkers or useful targets for therapies, in breast cancer. METHODS We developed unique DNA microarray coupled with spherical self-organizing map (sSOM) analysis to characterize cells and tissues by the cell surface markers. In the microarray 1,797 probes for human genes coding membrane bound proteins were spotted. With this microarray the gene expression profiles of eight breast carcinoma cell lines were compared to identify the genes that were commonly expressed in breast carcinomas but not in normal cells. RESULTS The gene expression profiles of sSOM from the eight breast carcinoma cell lines were successfully distinguished from that of normal breast tissue derived cells suggesting the presence of genes of interest, sSOMon the data extensively filtered revealed several candidate genes, of which expression was significant in carcinoma cells but low in normal cells. Finally, TM9SF2 was nominated through validations of PCR procedures together with CD24 and ErbB3, which are known breast carcinoma markers. TMgSF2 expression was further confirmed by immunological staining. Interestingly, TMgSF2 was found to be expressed in all the cell lines evaluated while CD24 and ErbB3 were not in all of the carcinoma cells, supporting their relationship in sSOM. Although physiological significance of TMgSF2 is unknown yet, siRNA treatment significantly inhibited the growth of MDA- MB-231 cells. CONCLUSION We propose TM9SF2 as a novel and useful diagnostic marker as well as a potential molecular target specific to breast carcinoma cells covering wide range of breast cancer.展开更多
探究9次跨膜超家族蛋白2(transmembrane 9 superfamily protein member 2,TM9SF2)对于三阴性乳腺癌MDA-MB-231细胞增殖和转移的影响及其分子机制。采用Western blot实验检测三阴性乳腺癌细胞株MDA-MB-231和非致瘤的乳腺上皮细胞株MCF-10...探究9次跨膜超家族蛋白2(transmembrane 9 superfamily protein member 2,TM9SF2)对于三阴性乳腺癌MDA-MB-231细胞增殖和转移的影响及其分子机制。采用Western blot实验检测三阴性乳腺癌细胞株MDA-MB-231和非致瘤的乳腺上皮细胞株MCF-10A中TM9SF2蛋白表达的情况;对高表达TM9SF2的三阴性细胞株MDA-MB-231进行基因沉默;采用MTS法检测细胞增殖活性,采用Transwell实验和划痕实验检测细胞的转移能力;采用Western blot实验检测细胞内增殖相关蛋白(PI3K、AKT、SRC和ERK)和转移相关蛋白(Snail、Slug和N-cadherin)的表达情况。Western blot实验证明,MDA-MB-231中TM9SF2蛋白的表达量高于MCF-10A细胞。与对照组相比,siRNA-TM9SF2转染组TM9SF2蛋白表达下调,细胞增殖活性降低,细胞转移能力减弱,PI3K、Snail、Slug和N-cadherin表达水平均降低,AKT蛋白磷酸化激活降低。研究结果表明,TM9SF2基因能促进三阴型乳腺癌MDA-MB-231细胞的增殖和转移。展开更多
Exfoliated ECTO-NOX3 (ENOX3) proteins, are members of the human TM9 superfamily of transmembrane proteins that generate superoxide, are present in blood and other body fluids, and increase activity with age beginning ...Exfoliated ECTO-NOX3 (ENOX3) proteins, are members of the human TM9 superfamily of transmembrane proteins that generate superoxide, are present in blood and other body fluids, and increase activity with age beginning about age 30, hence age-related NOX (arNOX or ENOX3). A yeast deletion library was screened based on NADH fluorescence using a 384 well plate assay to identify a yeast isolate lacking a previously identified cell surface oxidase exhibiting an oscillatory pattern with a period length of 26 min and capable of generating superoxide. The cDNA was cloned from a yeast over expression library using NADH as an impermeant substrate with analysis by Fast Fourier Transform and decomposition fits. The objective was to identify and sequence an ENOX homologue in Saccharomyces cerevisiae with a 26 min rather than a 24 or 25 min period length. The finding identified YER113C as the yeast ENOX3 protein with a 26 min period and capable of generating superoxide. The encoded protein was expressed in bacteria and characterized. Gel slices of expressed proteins revealed a protein of ca. 81,545 kDa with properties paralleling those of human ar-NOX (periodic NADH oxidation, protein disulfide thiol interchange, inhibited by mammalian arNOX inhibitors and superoxide production inhibited by superoxide dismutase). The YER113C sequence exhibited a 44% similarity and a 26% identity with the mammalian ENOX3 SF4 (arNOX SF4) of the TM9 superfamily of transmembrane proteins1. The YER113C deletion mutant lacked arNOX activity.展开更多
Age-related Ecto-Nicotinamide Adenine Dinucleotide Oxidase Disulfide Thiol Exchangers 3 (ENOX3) or age-related NADH oxidases (arNOX) are expressed at the cell surface as five members of the TM-9 superfamily, initially...Age-related Ecto-Nicotinamide Adenine Dinucleotide Oxidase Disulfide Thiol Exchangers 3 (ENOX3) or age-related NADH oxidases (arNOX) are expressed at the cell surface as five members of the TM-9 superfamily, initially membrane anchored, all functionally similar, with the N-termini exposed at the cell’s exterior. ECTO-NOXes are cell surface proteins with both time-keeping CoQH2 [NAD(P)H] oxidase and protein disulfidethiol interchange activities. They are designated as ECTO-NOX proteins because of their localization on the outer surface of the plasma membrane and to distinguish them from the phox-NOXes of host defense. A ca. 30 kDa N-terminal fragment is cleaved and accumulates in body fluids (serum, saliva, urine, perspiration). arNOXes appear around age 30 and increase steadily thereafter. Reduced quinones, i.e., reduced coenzyme Q, of the plasma membrane are natural substrates. NAD(P)H is oxidized as an artificial substrate. In one phase of the arNOX cycle electrons are transferred to oxygen to generate superoxide. Substrates for the shed forms of arNOX appear to be proteins of body fluids. Circulating lipoproteins and skin matrix proteins emerge as potentially important health-related targets. Through oxidation of collagen, elastin and other proteins of the skin matrix, arNOXes are major contributors to skin aging through tyrosine and thiol oxidation and subsequent cross linking. The main destructive action of arNOX, however, may be to directly oxidize circulating lipoproteins. arNOX in the blood is structured as an integral component of the LDL particle through site-specific binding. As such, arNOXes are implicated as major risk factors for cardiovascular disease due to specific oxidation of LDLs. The superoxide produced and its conversion to hydrogen peroxide would be one part of the potentially destructive properties by contribution to lipid oxidation. Inhibition of arNOX proteins provides a rational basis for anti-aging interventions and their elimination as a major risk factor of atherogenesis.展开更多
文摘Zhuo et al looked into the part of transmembrane 9 superfamily member 1(TM9SF1)in bladder cancer(BC),and evaluated if it can be used as a therapeutic target.They created a permanent BC cell line and tested the effects of TM9SF1 overexpression and suppression on BC cell growth,movement,invasion,and cell cycle advancement.Their results show that TM9SF1 can boost the growth,movement,and invasion of BC cells and their access into the G2/M stage of the cell cycle.This research gives a novel direction and concept for targeted therapy of BC.
基金Supported by National Natural Science Foundation of China,No.82260785.
文摘BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained unchanged for decades,which seriously affects the quality of patient survival.To improve the survival rate and prognosis of BC patients,it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention.Transmembrane 9 superfamily member 1(TM9SF1),also known as MP70 and HMP70,is a member of a family of nine transmembrane superfamily proteins,which was first identified in 1997.TM9SF1 can be expressed in BC,but its biological function and mechanism in BC are not clear.AIM To investigate the biological function and mechanism of TM9SF1 in BC.Overexpression of TM9SF1 increased the in vitro proliferation,migration,and invasion of BC cells by promoting the entry of BC cells into the G2/M phase.Silencing of TM9SF1 inhibited in vitro proliferation,migration,and invasion of BC cells and blocked BC cells in the G1 phase.CONCLUSION TM9SF1 may be an oncogene in BC.
基金supported by the Grantin-Aid for scientific research(B)No.18300164"Screening of carcinoma cell surface markers and its application in molecular targeting with bionanocapsules"Japan Society for the Promotion of Science(JSPS).
文摘OBJECTIVE We aimed identification of cell surface molecules, which might serve as diagnostic biomarkers or useful targets for therapies, in breast cancer. METHODS We developed unique DNA microarray coupled with spherical self-organizing map (sSOM) analysis to characterize cells and tissues by the cell surface markers. In the microarray 1,797 probes for human genes coding membrane bound proteins were spotted. With this microarray the gene expression profiles of eight breast carcinoma cell lines were compared to identify the genes that were commonly expressed in breast carcinomas but not in normal cells. RESULTS The gene expression profiles of sSOM from the eight breast carcinoma cell lines were successfully distinguished from that of normal breast tissue derived cells suggesting the presence of genes of interest, sSOMon the data extensively filtered revealed several candidate genes, of which expression was significant in carcinoma cells but low in normal cells. Finally, TM9SF2 was nominated through validations of PCR procedures together with CD24 and ErbB3, which are known breast carcinoma markers. TMgSF2 expression was further confirmed by immunological staining. Interestingly, TMgSF2 was found to be expressed in all the cell lines evaluated while CD24 and ErbB3 were not in all of the carcinoma cells, supporting their relationship in sSOM. Although physiological significance of TMgSF2 is unknown yet, siRNA treatment significantly inhibited the growth of MDA- MB-231 cells. CONCLUSION We propose TM9SF2 as a novel and useful diagnostic marker as well as a potential molecular target specific to breast carcinoma cells covering wide range of breast cancer.
文摘探究9次跨膜超家族蛋白2(transmembrane 9 superfamily protein member 2,TM9SF2)对于三阴性乳腺癌MDA-MB-231细胞增殖和转移的影响及其分子机制。采用Western blot实验检测三阴性乳腺癌细胞株MDA-MB-231和非致瘤的乳腺上皮细胞株MCF-10A中TM9SF2蛋白表达的情况;对高表达TM9SF2的三阴性细胞株MDA-MB-231进行基因沉默;采用MTS法检测细胞增殖活性,采用Transwell实验和划痕实验检测细胞的转移能力;采用Western blot实验检测细胞内增殖相关蛋白(PI3K、AKT、SRC和ERK)和转移相关蛋白(Snail、Slug和N-cadherin)的表达情况。Western blot实验证明,MDA-MB-231中TM9SF2蛋白的表达量高于MCF-10A细胞。与对照组相比,siRNA-TM9SF2转染组TM9SF2蛋白表达下调,细胞增殖活性降低,细胞转移能力减弱,PI3K、Snail、Slug和N-cadherin表达水平均降低,AKT蛋白磷酸化激活降低。研究结果表明,TM9SF2基因能促进三阴型乳腺癌MDA-MB-231细胞的增殖和转移。
文摘Exfoliated ECTO-NOX3 (ENOX3) proteins, are members of the human TM9 superfamily of transmembrane proteins that generate superoxide, are present in blood and other body fluids, and increase activity with age beginning about age 30, hence age-related NOX (arNOX or ENOX3). A yeast deletion library was screened based on NADH fluorescence using a 384 well plate assay to identify a yeast isolate lacking a previously identified cell surface oxidase exhibiting an oscillatory pattern with a period length of 26 min and capable of generating superoxide. The cDNA was cloned from a yeast over expression library using NADH as an impermeant substrate with analysis by Fast Fourier Transform and decomposition fits. The objective was to identify and sequence an ENOX homologue in Saccharomyces cerevisiae with a 26 min rather than a 24 or 25 min period length. The finding identified YER113C as the yeast ENOX3 protein with a 26 min period and capable of generating superoxide. The encoded protein was expressed in bacteria and characterized. Gel slices of expressed proteins revealed a protein of ca. 81,545 kDa with properties paralleling those of human ar-NOX (periodic NADH oxidation, protein disulfide thiol interchange, inhibited by mammalian arNOX inhibitors and superoxide production inhibited by superoxide dismutase). The YER113C sequence exhibited a 44% similarity and a 26% identity with the mammalian ENOX3 SF4 (arNOX SF4) of the TM9 superfamily of transmembrane proteins1. The YER113C deletion mutant lacked arNOX activity.
文摘Age-related Ecto-Nicotinamide Adenine Dinucleotide Oxidase Disulfide Thiol Exchangers 3 (ENOX3) or age-related NADH oxidases (arNOX) are expressed at the cell surface as five members of the TM-9 superfamily, initially membrane anchored, all functionally similar, with the N-termini exposed at the cell’s exterior. ECTO-NOXes are cell surface proteins with both time-keeping CoQH2 [NAD(P)H] oxidase and protein disulfidethiol interchange activities. They are designated as ECTO-NOX proteins because of their localization on the outer surface of the plasma membrane and to distinguish them from the phox-NOXes of host defense. A ca. 30 kDa N-terminal fragment is cleaved and accumulates in body fluids (serum, saliva, urine, perspiration). arNOXes appear around age 30 and increase steadily thereafter. Reduced quinones, i.e., reduced coenzyme Q, of the plasma membrane are natural substrates. NAD(P)H is oxidized as an artificial substrate. In one phase of the arNOX cycle electrons are transferred to oxygen to generate superoxide. Substrates for the shed forms of arNOX appear to be proteins of body fluids. Circulating lipoproteins and skin matrix proteins emerge as potentially important health-related targets. Through oxidation of collagen, elastin and other proteins of the skin matrix, arNOXes are major contributors to skin aging through tyrosine and thiol oxidation and subsequent cross linking. The main destructive action of arNOX, however, may be to directly oxidize circulating lipoproteins. arNOX in the blood is structured as an integral component of the LDL particle through site-specific binding. As such, arNOXes are implicated as major risk factors for cardiovascular disease due to specific oxidation of LDLs. The superoxide produced and its conversion to hydrogen peroxide would be one part of the potentially destructive properties by contribution to lipid oxidation. Inhibition of arNOX proteins provides a rational basis for anti-aging interventions and their elimination as a major risk factor of atherogenesis.