In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures...In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures:preparing Ti(OH)_4 doped with copper and synthesizing anatase and rutile TiO_2 doped with copper.Ti(OH)_4 doped with copper could be achieved by hydrolyzing TiCl_4in the mixed solution containing deionized water and copper oxalate.The Ti(OH)_4 doped with copper can be gained successfully by the following procedures:rinsing,drying and vacuum drying.The Ti(OH)_4 doped with copper could be converted into anatase TiO_2 doped with copper and rutile TiO_2 doped with copper by incineration for 4.5 h at 723 and 1 073 K,respectively.Characterizations of anatase TiO_2 doped with copper and rutile TiO_2 doped with copper were determined by X-ray diffraction(XRD) and energy dispersion of X-ray(EDX).Anatase and rutile TiO_2 doped with copper were dissolved in a mixed solution containing isopropanol and diethylamine.Stainless electrode was submerged into with the solutions,the film of TiO_2 was formed by drying the thin layer at a ramp rate of 3℃/min until 373 K,and this temperature was held for 1 h.The temperature of the oven was subsequently increased to a final temperature of 823 K at a ramp rate of 3℃/min,and was held at this value for 1 h.The stainless steel covered with modified TiO_2 film was utilized as the anode.The stainless steel mesh was used as the cathode.The cathode and anode were connected with the source and immersed into the solution with 100 mg/L 4-NP.The whole reaction on photocatalysis was perfectly carried out after ultraviolet radiation and aerator were run.The experimental results showed that:cracking ratio of 4-NP ring,the removal ratio of chemical oxygen demand(COD) and total organic carbon(TOC) were respectively more than 90%,80% and 80% within 2 h.Degradation of 4-NP implied its potential application in associated wastewater.展开更多
High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It w...High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It was shown that: for the reason of thermolysis and oxidation, the pH and Oxidation Reduction Potential (ORP) of solution decreased gradually with the increase of peak voltage and fulvic acid solution concentration, meanwhile the temperature and turbidity of solution increased gradually. Adding hydrochlorid acid in the treatment could amplify the effect of plasma. When the concentration of NOM as the surrogate parameter, Ultraviolet Absorbancy Degree (UV254) increased slowly by the effect of plasma, while the degradation of Total Organic Carbon (TOC) was first-order reaction. The removal rate of TOC increased from 22.6% to 33.4% by high voltage pulse electrical field of 35 kv, and from 25.6% to 36.7% with the addition of hydrochlorid acid. This paper may provide some basis for the scale-up design of water treatment process by high voltage pulse discharge plasma with other technologies.展开更多
基金Environmental Protection Department of Jiangsu Province,China(No.2013023)Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction,China(No.IWCER201202)
文摘In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures:preparing Ti(OH)_4 doped with copper and synthesizing anatase and rutile TiO_2 doped with copper.Ti(OH)_4 doped with copper could be achieved by hydrolyzing TiCl_4in the mixed solution containing deionized water and copper oxalate.The Ti(OH)_4 doped with copper can be gained successfully by the following procedures:rinsing,drying and vacuum drying.The Ti(OH)_4 doped with copper could be converted into anatase TiO_2 doped with copper and rutile TiO_2 doped with copper by incineration for 4.5 h at 723 and 1 073 K,respectively.Characterizations of anatase TiO_2 doped with copper and rutile TiO_2 doped with copper were determined by X-ray diffraction(XRD) and energy dispersion of X-ray(EDX).Anatase and rutile TiO_2 doped with copper were dissolved in a mixed solution containing isopropanol and diethylamine.Stainless electrode was submerged into with the solutions,the film of TiO_2 was formed by drying the thin layer at a ramp rate of 3℃/min until 373 K,and this temperature was held for 1 h.The temperature of the oven was subsequently increased to a final temperature of 823 K at a ramp rate of 3℃/min,and was held at this value for 1 h.The stainless steel covered with modified TiO_2 film was utilized as the anode.The stainless steel mesh was used as the cathode.The cathode and anode were connected with the source and immersed into the solution with 100 mg/L 4-NP.The whole reaction on photocatalysis was perfectly carried out after ultraviolet radiation and aerator were run.The experimental results showed that:cracking ratio of 4-NP ring,the removal ratio of chemical oxygen demand(COD) and total organic carbon(TOC) were respectively more than 90%,80% and 80% within 2 h.Degradation of 4-NP implied its potential application in associated wastewater.
文摘High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It was shown that: for the reason of thermolysis and oxidation, the pH and Oxidation Reduction Potential (ORP) of solution decreased gradually with the increase of peak voltage and fulvic acid solution concentration, meanwhile the temperature and turbidity of solution increased gradually. Adding hydrochlorid acid in the treatment could amplify the effect of plasma. When the concentration of NOM as the surrogate parameter, Ultraviolet Absorbancy Degree (UV254) increased slowly by the effect of plasma, while the degradation of Total Organic Carbon (TOC) was first-order reaction. The removal rate of TOC increased from 22.6% to 33.4% by high voltage pulse electrical field of 35 kv, and from 25.6% to 36.7% with the addition of hydrochlorid acid. This paper may provide some basis for the scale-up design of water treatment process by high voltage pulse discharge plasma with other technologies.