Domain-domain interactions are important clues to inferring protein-protein interactions. Although about 8 000 domain-domain interactions are discovered so far,they are just the tip of the iceberg. Because domains are...Domain-domain interactions are important clues to inferring protein-protein interactions. Although about 8 000 domain-domain interactions are discovered so far,they are just the tip of the iceberg. Because domains are conservative and commonplace in proteins,domain-domain interactions are discovered based on pairs of domains which significantly co-exist in proteins. Meanwhile,it is realized that:( 1) domain-domain interactions may exist within the same proteins or across different proteins;( 2) only the domain-domain interactions across different proteins can mediate interactions between proteins;( 3) domains have biases to interact with other domains. And then,a novel method is put forward to construct protein-protein interaction network by using domain-domain interactions. The method is validated by experiments and compared with the state- of-art methods in the field. The experimental results suggest that the method is reasonable and effectiveness on constructing Protein-protein interactions network.展开更多
Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the stat...Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the state-of-the-art methods for cross-media analysis and reasoning or presented advances, challenges, and future directions for the field. To address these issues, we provide an overview as follows: (1) theory and model for cross-media uniform representation; (2) cross-media correlation understanding and deep mining; (3) cross-media knowledge graph construction and learning methodologies; (4) cross-media knowledge evolution and reasoning; (5) cross-media description and generation; (6) cross-media intelligent engines; and (7) cross-media intelligent applications. By presenting approaches, advances, and future directions in cross-media analysis and reasoning, our goal is not only to draw more attention to the state-of-the-art advances in the field, but also to provide technical insights by discussing the challenges and research directions in these areas.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271346,61571163,61532014,91335112 and 61402132)the Fundamental Research Funds for the Central Universities(Grant No.DB13AB02)
文摘Domain-domain interactions are important clues to inferring protein-protein interactions. Although about 8 000 domain-domain interactions are discovered so far,they are just the tip of the iceberg. Because domains are conservative and commonplace in proteins,domain-domain interactions are discovered based on pairs of domains which significantly co-exist in proteins. Meanwhile,it is realized that:( 1) domain-domain interactions may exist within the same proteins or across different proteins;( 2) only the domain-domain interactions across different proteins can mediate interactions between proteins;( 3) domains have biases to interact with other domains. And then,a novel method is put forward to construct protein-protein interaction network by using domain-domain interactions. The method is validated by experiments and compared with the state- of-art methods in the field. The experimental results suggest that the method is reasonable and effectiveness on constructing Protein-protein interactions network.
基金supported by the National Natural Science Foundation of China(Nos.61371128,U1611461,61425025,and 61532005)
文摘Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the state-of-the-art methods for cross-media analysis and reasoning or presented advances, challenges, and future directions for the field. To address these issues, we provide an overview as follows: (1) theory and model for cross-media uniform representation; (2) cross-media correlation understanding and deep mining; (3) cross-media knowledge graph construction and learning methodologies; (4) cross-media knowledge evolution and reasoning; (5) cross-media description and generation; (6) cross-media intelligent engines; and (7) cross-media intelligent applications. By presenting approaches, advances, and future directions in cross-media analysis and reasoning, our goal is not only to draw more attention to the state-of-the-art advances in the field, but also to provide technical insights by discussing the challenges and research directions in these areas.