为了在有限的时间内产生质量可接受的视频摘要以达到在线使用的要求,提出一种基于视觉特征提取(visual features extraction,VFE)的压缩域视频摘要快速提取方法。从每帧输入视频中提取视觉特征,采用零均值归一化交叉相关(zero mean norm...为了在有限的时间内产生质量可接受的视频摘要以达到在线使用的要求,提出一种基于视觉特征提取(visual features extraction,VFE)的压缩域视频摘要快速提取方法。从每帧输入视频中提取视觉特征,采用零均值归一化交叉相关(zero mean normalized cross correlation,ZNCC)指标检测有相似内容的视频帧组,为每组选择代表性帧,运用2个量化直方图过滤所选择的帧,从而避免视频摘要中可能的冗余或无意义帧。在视频检索国际权威评测(TREC video retrieval evaluation,TRECVID)2007数据集上的实验结果表明,与基于聚类的高斯混合模型、基于熵的模糊C均值聚类和关键帧提取方法相比,该方法提取的视频摘要质量更高,且在时间和空间复杂度上具有明显优势,适合在线实时处理。展开更多
文摘为了在有限的时间内产生质量可接受的视频摘要以达到在线使用的要求,提出一种基于视觉特征提取(visual features extraction,VFE)的压缩域视频摘要快速提取方法。从每帧输入视频中提取视觉特征,采用零均值归一化交叉相关(zero mean normalized cross correlation,ZNCC)指标检测有相似内容的视频帧组,为每组选择代表性帧,运用2个量化直方图过滤所选择的帧,从而避免视频摘要中可能的冗余或无意义帧。在视频检索国际权威评测(TREC video retrieval evaluation,TRECVID)2007数据集上的实验结果表明,与基于聚类的高斯混合模型、基于熵的模糊C均值聚类和关键帧提取方法相比,该方法提取的视频摘要质量更高,且在时间和空间复杂度上具有明显优势,适合在线实时处理。