This paper proposes a TSK fuzzy approach to channel estimation for Orthogonal Frequency Division Multiplexing (OFDM) systems. The information of dispersive fading channel is described by using TSK fuzzy model, which...This paper proposes a TSK fuzzy approach to channel estimation for Orthogonal Frequency Division Multiplexing (OFDM) systems. The information of dispersive fading channel is described by using TSK fuzzy model, which is updated by the pilot symbols. The proposed approach can trace the variation of channel and it is computationally simple. Its performance is tested via simulations. Results show that it is comparable to that of ideal Minimum Mean-Square-Error (MMSE) method, especially at the low Signal to Noise Ratio (SNR).展开更多
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas...The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.展开更多
In this paper, we propose and construct an observer design based on a Self-Recurrent Consequent-Part Fuzzy Wavelet Neural Network(SRCPFWNN) for a class of nonlinear system. We use a Self-Recurrent Wavelet Neural Net...In this paper, we propose and construct an observer design based on a Self-Recurrent Consequent-Part Fuzzy Wavelet Neural Network(SRCPFWNN) for a class of nonlinear system. We use a Self-Recurrent Wavelet Neural Network(SRWNN) to construct a self-recurrent consequent part for each rule of the Takagi-Sugeno-Kang(TSK) model in the SRCPFWNN and analyze the structure of the fuzzy wavelet neural network model. Based on the Direct Adaptive Control Theory(DACT) and a back propagation-based learning algorithm, all parameters of the consequent parts are updated online in the SRCPFWNN. On this basis, we propose a design method using an adaptive state observer based on an SRCPFWNN for nonlinear systems. Using the Lyapunov function, we then prove the stability of this observer design method. Our simulation results confirm that the observer can accurately and quickly estimate the state values of the system.展开更多
文摘This paper proposes a TSK fuzzy approach to channel estimation for Orthogonal Frequency Division Multiplexing (OFDM) systems. The information of dispersive fading channel is described by using TSK fuzzy model, which is updated by the pilot symbols. The proposed approach can trace the variation of channel and it is computationally simple. Its performance is tested via simulations. Results show that it is comparable to that of ideal Minimum Mean-Square-Error (MMSE) method, especially at the low Signal to Noise Ratio (SNR).
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia。
文摘The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.
文摘In this paper, we propose and construct an observer design based on a Self-Recurrent Consequent-Part Fuzzy Wavelet Neural Network(SRCPFWNN) for a class of nonlinear system. We use a Self-Recurrent Wavelet Neural Network(SRWNN) to construct a self-recurrent consequent part for each rule of the Takagi-Sugeno-Kang(TSK) model in the SRCPFWNN and analyze the structure of the fuzzy wavelet neural network model. Based on the Direct Adaptive Control Theory(DACT) and a back propagation-based learning algorithm, all parameters of the consequent parts are updated online in the SRCPFWNN. On this basis, we propose a design method using an adaptive state observer based on an SRCPFWNN for nonlinear systems. Using the Lyapunov function, we then prove the stability of this observer design method. Our simulation results confirm that the observer can accurately and quickly estimate the state values of the system.