Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home...Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions.展开更多
TSD is one of the classical methods of tunnel seismic prediction based on higher accuracy multi-wave multi-component seismology.The working principle of the TSD and an application example of the TSD on tunnel predicti...TSD is one of the classical methods of tunnel seismic prediction based on higher accuracy multi-wave multi-component seismology.The working principle of the TSD and an application example of the TSD on tunnel prediction in Chongqing are introduced in this paper.This system has two ports for speed signal and acceleration signal,and the equipment is more portable and easy to use.According to the application results we can conclude that the TSD prediction system is accurate and it has the wide application prospect in tunnel seismic detection.展开更多
Because of the frequent serious geo-hazards met in constructing sub-river tunnels,the application of geological prediction is necessary to reduce the risk. Taking the Liuyang River Tunnel(10.1 km,with 362 m of the sub...Because of the frequent serious geo-hazards met in constructing sub-river tunnels,the application of geological prediction is necessary to reduce the risk. Taking the Liuyang River Tunnel(10.1 km,with 362 m of the sub-river part) which is one of the key projects of the dedicated-passenger railway from Wuhan to Guangzhou as an example,the application of integrated geological prediction technologies is expounded in detail.The effects of TSP(tunnel seismic prediction) and infrared water detectors are analyzed as key points in order to summarize the advantages and disadvantages of these devices.The results of this research which can be adopted to improve the effects of the展开更多
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective...The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.展开更多
文摘Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2007AA06Z215)
文摘TSD is one of the classical methods of tunnel seismic prediction based on higher accuracy multi-wave multi-component seismology.The working principle of the TSD and an application example of the TSD on tunnel prediction in Chongqing are introduced in this paper.This system has two ports for speed signal and acceleration signal,and the equipment is more portable and easy to use.According to the application results we can conclude that the TSD prediction system is accurate and it has the wide application prospect in tunnel seismic detection.
文摘Because of the frequent serious geo-hazards met in constructing sub-river tunnels,the application of geological prediction is necessary to reduce the risk. Taking the Liuyang River Tunnel(10.1 km,with 362 m of the sub-river part) which is one of the key projects of the dedicated-passenger railway from Wuhan to Guangzhou as an example,the application of integrated geological prediction technologies is expounded in detail.The effects of TSP(tunnel seismic prediction) and infrared water detectors are analyzed as key points in order to summarize the advantages and disadvantages of these devices.The results of this research which can be adopted to improve the effects of the
基金Supported by National Natural Science Foundation of China (50625927,50727904)the National Basic Research Program (973) of China (2007CB209407)Ministry of Communications’Scientific and Technological Program of Transportation Development in Western China(2009318000008)
文摘The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.