An implicit numerical scheme is developed based on the simplified marker and cell (SMAC) method to solve Reynolds-averaged equations in general curvilinear coordinates for three-dimensional (3-D) unsteady incompre...An implicit numerical scheme is developed based on the simplified marker and cell (SMAC) method to solve Reynolds-averaged equations in general curvilinear coordinates for three-dimensional (3-D) unsteady incompressible turbulent flow. The governing equations include the Reynolds-averaged momentum equations, in which contravariant velocities are unknown variables, pressure-correction Poisson equation and k- s turbulent equations. The governing equations are discretized in a 3-D MAC staggered grid system. To improve the numerical stability of the implicit SMAC scheme, the higherorder high-resolution Chakravarthy-Osher total variation diminishing (TVD) scheme is used to discretize the convective terms in momentum equations and k- e equations. The discretized algebraic momentum equations and k- s equations are solved by the time-diversion multiple access (CTDMA) method. The algebraic Poisson equations are solved by the Tschebyscheff SLOR (successive linear over relaxation) method with alternating computational directions. At the end of the paper, the unsteady flow at high Reynolds numbers through a simplified cascade made up of NACA65-410 blade are simulated with the program written according to the implicit numerical scheme. The reliability and accuracy of the implicit numerical scheme are verified through the satisfactory agreement between the numerical results of the surface pressure coefficient and experimental data. The numerical results indicate that Reynolds number and angle of attack are two primary factors affecting the characteristics of unsteady flow.展开更多
Central discontinuous Galerkin(CDG)method is used to solve the Navier-Stokes equations for viscous flow in this paper.The CDG method involves two pieces of approximate solutions defined on overlapping meshes.Taking ...Central discontinuous Galerkin(CDG)method is used to solve the Navier-Stokes equations for viscous flow in this paper.The CDG method involves two pieces of approximate solutions defined on overlapping meshes.Taking advantages of the redundant representation of the solution on the overlapping meshes,the cell interface of one computational mesh is right inside the staggered mesh,hence approximate Riemann solvers are not needed at cell interfaces.Third order total variation diminishing(TVD)Runge-Kutta(RK)methods are applied in time discretization.Numerical examples for 1D and2 D viscous flow simulations are presented to validate the accuracy and robustness of the CDG method.展开更多
In this paper we study a kind of mixed anti-diffusion method for partial differntial equations. Firstly, we use the method to construct some difference schemes for the conservation laws. The schemes are of second orde...In this paper we study a kind of mixed anti-diffusion method for partial differntial equations. Firstly, we use the method to construct some difference schemes for the conservation laws. The schemes are of second order accuracy and are total variation decreasing (TVD). In particular, there are only three knots involved in the schemes. Secondly, we extend the method to construct a few high accuracy difference schemes for elliptic and parabolic equations. Numerical experiments are carried out to illustrate the efficiency of the method.展开更多
A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing e...A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.展开更多
文摘An implicit numerical scheme is developed based on the simplified marker and cell (SMAC) method to solve Reynolds-averaged equations in general curvilinear coordinates for three-dimensional (3-D) unsteady incompressible turbulent flow. The governing equations include the Reynolds-averaged momentum equations, in which contravariant velocities are unknown variables, pressure-correction Poisson equation and k- s turbulent equations. The governing equations are discretized in a 3-D MAC staggered grid system. To improve the numerical stability of the implicit SMAC scheme, the higherorder high-resolution Chakravarthy-Osher total variation diminishing (TVD) scheme is used to discretize the convective terms in momentum equations and k- e equations. The discretized algebraic momentum equations and k- s equations are solved by the time-diversion multiple access (CTDMA) method. The algebraic Poisson equations are solved by the Tschebyscheff SLOR (successive linear over relaxation) method with alternating computational directions. At the end of the paper, the unsteady flow at high Reynolds numbers through a simplified cascade made up of NACA65-410 blade are simulated with the program written according to the implicit numerical scheme. The reliability and accuracy of the implicit numerical scheme are verified through the satisfactory agreement between the numerical results of the surface pressure coefficient and experimental data. The numerical results indicate that Reynolds number and angle of attack are two primary factors affecting the characteristics of unsteady flow.
基金Supported by the National Natural Science Foundation of China(11602262)
文摘Central discontinuous Galerkin(CDG)method is used to solve the Navier-Stokes equations for viscous flow in this paper.The CDG method involves two pieces of approximate solutions defined on overlapping meshes.Taking advantages of the redundant representation of the solution on the overlapping meshes,the cell interface of one computational mesh is right inside the staggered mesh,hence approximate Riemann solvers are not needed at cell interfaces.Third order total variation diminishing(TVD)Runge-Kutta(RK)methods are applied in time discretization.Numerical examples for 1D and2 D viscous flow simulations are presented to validate the accuracy and robustness of the CDG method.
文摘In this paper we study a kind of mixed anti-diffusion method for partial differntial equations. Firstly, we use the method to construct some difference schemes for the conservation laws. The schemes are of second order accuracy and are total variation decreasing (TVD). In particular, there are only three knots involved in the schemes. Secondly, we extend the method to construct a few high accuracy difference schemes for elliptic and parabolic equations. Numerical experiments are carried out to illustrate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(Grant No.51579034)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOCW1502)
文摘A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.