A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coup...A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler, is proposed. Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power, about 10% of electron efficiency and a tunable band of 73.35-73.91 GHz may be achieved. Compared with Backward Wave Oscillators (BWOs), the new devices have similar ability for tuning, and have much higher electron efficiency, suggesting much more potential as a Terahertz source.展开更多
The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overal...The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/d B and 2.5°/d B, respectively, which are 20.1°/d B and 1.6°/d B lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 d Bc lower than that of the original tube.展开更多
A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capa...A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.展开更多
Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam...Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced. It operates in the fundamental mode at the first spatial harmonic. The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube. Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz, on the assumption that the input power is 0.1 W and the beam power is 5.155 kW. The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6% and 34.6 dB, respectively. Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.展开更多
This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam- wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azim...This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam- wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azimuthally sym- metric waves in a vacuum sheath helix. Coupling impedance is introduced to the electromagnetic field equations' stimulating sources, which makes the theory easier and more flexible to realize. The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations. The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included. The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields, focusing fields and space-charge fields. The numerically simulated results of a tube are presented.展开更多
A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of...A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory.展开更多
Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit fo...Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit for the millimeter-wave TWT with advantages of high power capacity, fine heat dissipation, scalability to smaller dimen- sions for shorter wavelengths, compact structure and robust performance. Compared with the traditional closed structure, the open rectangular waveguide grating (ORWG) has wider bandwidth, lower cut-off frequency, and higher machining precision for higher working frequencies due to the open transverse. It is a potential structure that can work in the millimeter wave and even Terahertz band. The rf characteristics including dispersion and interaction impedance are investigated by both theoretic calculation and software simulation. The influences of the structure parameters are also discussed and compared, and the theoretical results agree well with the simula- tion results. Based on the study, the ORWG will favor the design of a broadband and high-power millimeter-wave TWT.展开更多
Traveling Wave Tubes(TWTs) are widely used in the radar and communications system as RF power amplifiers. A highly sophisticated power supply is required by TWT. In order to meet the severe requirements of Traveling W...Traveling Wave Tubes(TWTs) are widely used in the radar and communications system as RF power amplifiers. A highly sophisticated power supply is required by TWT. In order to meet the severe requirements of Traveling Wave Tube Amplifier(TWTA), a novel two-stage topology high voltage converter for TWTA is proposed.The converter is based on Zero-Voltage Switching and Zero-Current Switching(ZVS/ZCS) resonant techniques. The high voltage converter operation principles are investigated and major features of the converter are discussed. The power switching mode of ZVS/ZCS is obtained. The experimental results show that the converter has good soft switching characteristics. Compared to the conventional hard switched Pulse Width Modulation(PWM) techniques, the high efficiency and low ripple of the converter for TWTA are realized. The efficiency of High Voltage Electronic Power Conditioners(HV-EPC) over 93.5% under the condition of 38~46 V input voltage and 260~300 W input power. The switching frequency of first-stage(preregulator) of HV-EPC is 89 k Hz and the switching frequency of second-stage(postregulator) is 44.5 k Hz. The highest output voltage of the HV-EPC is helix voltage which is about –6.8 kV. It is especially suitable for TWTA utilized in space satellite applications due to its high switching frequency and high power density.展开更多
An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic ci...An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.展开更多
The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent th...The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.展开更多
Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion...Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.展开更多
On the basis of a rigorous field theory, two different physical models of attenuator and sever have been proposed. One is named High attenuation (HATT) model in which both attenuator and sever are considered as a un...On the basis of a rigorous field theory, two different physical models of attenuator and sever have been proposed. One is named High attenuation (HATT) model in which both attenuator and sever are considered as a unified attenuator, but the sever is regarded as an area of very high loss; the other is called Sever and attenuator (SATT) model in which the sever is modelled as a drift area in which the electric and magnetic fields both vanish. A complex function is derived and potential sinking effect is also considered. Thus, a set of more practical self-consistent equations of nonlinear beam-wave interaction is formulated. Simulations are carried out under the conditions of the two different physical models, and the simulation results are compared with the experimental data. The results show that in the case of single signal drive, the unknown second harmonic should be included for predicting the saturated output power. It is also evident that the SATT model and the HATT model predict the same physical nature, whereas the results predicted by the HATT model are much closer to the experimental data than those obtained from the SATT model. Therefore, these results provide a strong theoretical basis for designing broadband and high gain helix travelling wave tubes.展开更多
A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three reg...A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.展开更多
基金Supported by the National Natural Science Foundation of China (No. 61172016)
文摘A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler, is proposed. Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power, about 10% of electron efficiency and a tunable band of 73.35-73.91 GHz may be achieved. Compared with Backward Wave Oscillators (BWOs), the new devices have similar ability for tuning, and have much higher electron efficiency, suggesting much more potential as a Terahertz source.
基金Project supported by the National Natural Science Foundation of China(Grant No.61401430)
文摘The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/d B and 2.5°/d B, respectively, which are 20.1°/d B and 1.6°/d B lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 d Bc lower than that of the original tube.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271029)the Natural Science Key Laboratory Foundationthe Natural Science Fund for Distinguished Young Scholars of China(Grant No.61125103)
文摘A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.
基金Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 61125103)the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003)
文摘Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced. It operates in the fundamental mode at the first spatial harmonic. The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube. Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz, on the assumption that the input power is 0.1 W and the beam power is 5.155 kW. The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6% and 34.6 dB, respectively. Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60601004,60801029,10876005,and60931001)
文摘This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam- wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azimuthally sym- metric waves in a vacuum sheath helix. Coupling impedance is introduced to the electromagnetic field equations' stimulating sources, which makes the theory easier and more flexible to realize. The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations. The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included. The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields, focusing fields and space-charge fields. The numerically simulated results of a tube are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60601004, 60801029, 10876005, and 60931001)
文摘A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory.
基金Supported by the National Natural Science Foundation of China under Grant No 61271029the National Science Fund for Distinguished Young Scholars of China under Grant No 61125103the National Research Foundation of Korea under Grant No MSIP:NRF-2009-0083512
文摘Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit for the millimeter-wave TWT with advantages of high power capacity, fine heat dissipation, scalability to smaller dimen- sions for shorter wavelengths, compact structure and robust performance. Compared with the traditional closed structure, the open rectangular waveguide grating (ORWG) has wider bandwidth, lower cut-off frequency, and higher machining precision for higher working frequencies due to the open transverse. It is a potential structure that can work in the millimeter wave and even Terahertz band. The rf characteristics including dispersion and interaction impedance are investigated by both theoretic calculation and software simulation. The influences of the structure parameters are also discussed and compared, and the theoretical results agree well with the simula- tion results. Based on the study, the ORWG will favor the design of a broadband and high-power millimeter-wave TWT.
文摘Traveling Wave Tubes(TWTs) are widely used in the radar and communications system as RF power amplifiers. A highly sophisticated power supply is required by TWT. In order to meet the severe requirements of Traveling Wave Tube Amplifier(TWTA), a novel two-stage topology high voltage converter for TWTA is proposed.The converter is based on Zero-Voltage Switching and Zero-Current Switching(ZVS/ZCS) resonant techniques. The high voltage converter operation principles are investigated and major features of the converter are discussed. The power switching mode of ZVS/ZCS is obtained. The experimental results show that the converter has good soft switching characteristics. Compared to the conventional hard switched Pulse Width Modulation(PWM) techniques, the high efficiency and low ripple of the converter for TWTA are realized. The efficiency of High Voltage Electronic Power Conditioners(HV-EPC) over 93.5% under the condition of 38~46 V input voltage and 260~300 W input power. The switching frequency of first-stage(preregulator) of HV-EPC is 89 k Hz and the switching frequency of second-stage(postregulator) is 44.5 k Hz. The highest output voltage of the HV-EPC is helix voltage which is about –6.8 kV. It is especially suitable for TWTA utilized in space satellite applications due to its high switching frequency and high power density.
基金supported by the National Natural Science Foundation of China (Grant No. 60971038)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103)the Vacuum Electronics National Lab Foundation, China (Grant No. 9140C050101110C0501)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.
基金supported by National Natural Science Foundation of China(No.61671431)
文摘Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.
基金supported by the National Natural Science Foundation of China (Grant Nos 60601007 and 60532010)the Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No JX05018)
文摘On the basis of a rigorous field theory, two different physical models of attenuator and sever have been proposed. One is named High attenuation (HATT) model in which both attenuator and sever are considered as a unified attenuator, but the sever is regarded as an area of very high loss; the other is called Sever and attenuator (SATT) model in which the sever is modelled as a drift area in which the electric and magnetic fields both vanish. A complex function is derived and potential sinking effect is also considered. Thus, a set of more practical self-consistent equations of nonlinear beam-wave interaction is formulated. Simulations are carried out under the conditions of the two different physical models, and the simulation results are compared with the experimental data. The results show that in the case of single signal drive, the unknown second harmonic should be included for predicting the saturated output power. It is also evident that the SATT model and the HATT model predict the same physical nature, whereas the results predicted by the HATT model are much closer to the experimental data than those obtained from the SATT model. Therefore, these results provide a strong theoretical basis for designing broadband and high gain helix travelling wave tubes.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347009) and the Science Foundation of Education Bureau of Sichuan Province, China (Grant No 2003B019).
文摘A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.