Based on a previous research of cavitation effect under bi-frequency ultrasound irradiation, this paper studies bi-frequency irradiations with similar experimental settings. The additional irradiation sources with fre...Based on a previous research of cavitation effect under bi-frequency ultrasound irradiation, this paper studies bi-frequency irradiations with similar experimental settings. The additional irradiation sources with frequencies of 1.04MHz, 0.8MHz and 1.7MHz are individually combined with the main ultrasonic irradiation source with frequency of 28kHz to form bi-frequency ultrasonic irradiation. The intensity of 28kHz irradiation was fixed at 12.5W/cm^2, while the intensity of the ultrasound at the other three frequencies is varied from1 W/cm^2 to 18 W/cm^2. It turns out that under the influence of the bi-frequency irradiation, the fluorescence intensity is obviously greater than the sum of those at individual frequencies. So the frequency of the additional sonication strikingly influences the fluorescence enhancement effect. For example, the fluorescence enhancement effect of 1.04MHz is stronger than that of 1.7MHz, and the enhancement effect of 0.8MHz is further stronger than that of 1.04MHz. Under the sonic intensity of (7.9)W/cm^2, the fluorescence intensity of 1.04MHz is approximately twice that of 1.7MHz while the fluorescence intensity of 0.8MHz is approximately 1.5 times that of 1.04MHz.展开更多
The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increa...The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.展开更多
采用射频磁控溅射法,在不同的衬底温度下制备了钽(Ta)掺杂的氧化锌(ZnO)薄膜,采用X射线能谱(EDS)、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见分光光度计和光致发光(PL)光谱研究了衬底温度对制备的Ta掺杂ZnO薄膜的组分、微观结构、形貌...采用射频磁控溅射法,在不同的衬底温度下制备了钽(Ta)掺杂的氧化锌(ZnO)薄膜,采用X射线能谱(EDS)、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见分光光度计和光致发光(PL)光谱研究了衬底温度对制备的Ta掺杂ZnO薄膜的组分、微观结构、形貌和光学特性的影响。EDS的检测结果表明,Ta元素成功掺入到了ZnO薄膜;XRD图谱表明,掺入的Ta杂质是替代式杂质,没有破坏ZnO的六方晶格结构,随着衬底温度的升高,(002)衍射峰的强度先增大后降低,在400℃时达到最大;SEM测试表明当衬底温度较高时(400℃和500℃),Ta掺杂ZnO薄膜的晶粒明显变大;紫外-可见透过光谱显示,在可见光范围,Ta掺杂ZnO薄膜的平均透光率均高于80%,衬底不加热时制备的Ta掺杂ZnO的透光率最高;制备的Ta掺杂ZnO薄膜的禁带宽度范围为3.34~3.37 e V,衬底温度为500℃时制备的Ta掺杂ZnO薄膜的禁带宽度最小,为3.34 e V。PL光谱表明衬底温度为500℃时制备的Ta掺杂ZnO薄膜中缺陷较多,这也是造成薄膜禁带宽度变小的原因。展开更多
Ag(Nb0.8Ta0.2)O3 ceramics were prepared by the traditional solid-state reaction method. The effect of CaF2 addition on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated. The add...Ag(Nb0.8Ta0.2)O3 ceramics were prepared by the traditional solid-state reaction method. The effect of CaF2 addition on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated. The addition of CaF2 led the ceramics to a larger grain size and distortion of lattice. With the addition of 4.5 wt.% CaF2, the permittivity of the ceramics increased from 442 to 1028, the dielectric loss decreased sharply from 6.12 × 10^-3 to 8.6 × 10^-4, and the temperature coefficient of capacitance decreased from 1834 ppm/℃ to -50 ppm/℃ (at 1 MHz). These results indicated that the high permittivity was related with a large grain size, a low grain boundary density, and the weak Ta-O or Nb-O bond strength caused by the addition of CaF2.展开更多
文摘Based on a previous research of cavitation effect under bi-frequency ultrasound irradiation, this paper studies bi-frequency irradiations with similar experimental settings. The additional irradiation sources with frequencies of 1.04MHz, 0.8MHz and 1.7MHz are individually combined with the main ultrasonic irradiation source with frequency of 28kHz to form bi-frequency ultrasonic irradiation. The intensity of 28kHz irradiation was fixed at 12.5W/cm^2, while the intensity of the ultrasound at the other three frequencies is varied from1 W/cm^2 to 18 W/cm^2. It turns out that under the influence of the bi-frequency irradiation, the fluorescence intensity is obviously greater than the sum of those at individual frequencies. So the frequency of the additional sonication strikingly influences the fluorescence enhancement effect. For example, the fluorescence enhancement effect of 1.04MHz is stronger than that of 1.7MHz, and the enhancement effect of 0.8MHz is further stronger than that of 1.04MHz. Under the sonic intensity of (7.9)W/cm^2, the fluorescence intensity of 1.04MHz is approximately twice that of 1.7MHz while the fluorescence intensity of 0.8MHz is approximately 1.5 times that of 1.04MHz.
文摘The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.
基金Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry under grant No.2004527 and by the Natural Science Foundation of Chongqing Municipality under grant No.8427 and 8656
文摘采用射频磁控溅射法,在不同的衬底温度下制备了钽(Ta)掺杂的氧化锌(ZnO)薄膜,采用X射线能谱(EDS)、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见分光光度计和光致发光(PL)光谱研究了衬底温度对制备的Ta掺杂ZnO薄膜的组分、微观结构、形貌和光学特性的影响。EDS的检测结果表明,Ta元素成功掺入到了ZnO薄膜;XRD图谱表明,掺入的Ta杂质是替代式杂质,没有破坏ZnO的六方晶格结构,随着衬底温度的升高,(002)衍射峰的强度先增大后降低,在400℃时达到最大;SEM测试表明当衬底温度较高时(400℃和500℃),Ta掺杂ZnO薄膜的晶粒明显变大;紫外-可见透过光谱显示,在可见光范围,Ta掺杂ZnO薄膜的平均透光率均高于80%,衬底不加热时制备的Ta掺杂ZnO的透光率最高;制备的Ta掺杂ZnO薄膜的禁带宽度范围为3.34~3.37 e V,衬底温度为500℃时制备的Ta掺杂ZnO薄膜的禁带宽度最小,为3.34 e V。PL光谱表明衬底温度为500℃时制备的Ta掺杂ZnO薄膜中缺陷较多,这也是造成薄膜禁带宽度变小的原因。
基金supported by the Program for New Century Excellent Talents in Universities (NCET)the National High-Tech Research and Development Program of China (No. 2007AA03Z423)China Postdoctoral Science Foundation
文摘Ag(Nb0.8Ta0.2)O3 ceramics were prepared by the traditional solid-state reaction method. The effect of CaF2 addition on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated. The addition of CaF2 led the ceramics to a larger grain size and distortion of lattice. With the addition of 4.5 wt.% CaF2, the permittivity of the ceramics increased from 442 to 1028, the dielectric loss decreased sharply from 6.12 × 10^-3 to 8.6 × 10^-4, and the temperature coefficient of capacitance decreased from 1834 ppm/℃ to -50 ppm/℃ (at 1 MHz). These results indicated that the high permittivity was related with a large grain size, a low grain boundary density, and the weak Ta-O or Nb-O bond strength caused by the addition of CaF2.