A rational utilization of land is a matter of importance in sustainable development of mountainous area.The land function in mountainous areas has a close connection with space structure of ecology,production and livi...A rational utilization of land is a matter of importance in sustainable development of mountainous area.The land function in mountainous areas has a close connection with space structure of ecology,production and living.To promote a harmonious development of the relationship between people and nature in mountainous areas,it is necessary to coordinate their relationships of space functions.Suitability evaluation of basic unit function associated with multi-scale space analysis is a prerequisite to a reasonable optimization of land function structure.In this study,an optimized evaluation index system of combination functions was introduced into the assessment of ecological spatial functional suitability in ecological fragile regions by adding three indicators,namely,soil erosion sensitivity,landscape ecological risk and ecological sensitivity.The principle of"taking high"(referred to a function with high suitability to be regarded as the main function of an evaluation unit)and ecological priority(referred to the case,supposing the suitability of a unit’s three functions is consistent,the main function is determined to be the ecological function)were used to determine the main function of an evaluation unit.Pingshan County,China,located at the eastern foot of the Taihang Mountain,was targeted in this case study.The production-livingecology space(PLES)function in Pingshan was identified by applying our improved valuation indexes.Further,the functional suitability distribution of the combination of elements was obtained by using overlapping comprehensive analysis method,considering the tradeoff of the functional suitability of combination elements.The regions suitable for production/living were distributed in relatively flat piedmont plains,whereas the regions suitable for ecology were distributed in the mountain areas of middle and low altitudes.Therefore,to maintain a sustainable development in mountainous areas,an improved scheme of development for Pingshan should be to delineate ecologically fragile areas,to build ecological industrial parks near existing scenic spots,to protect basic agricultural production areas,and to increase investment in science and technology,including reasonable ecological compensation.This study can provide reference for the planning of sustainable development in the Taihang Mountain area and similar regions.展开更多
In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local sh...In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.展开更多
[Objective] The aim was to study change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. [ Method] Based on daily precipitation data at Shij...[Objective] The aim was to study change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. [ Method] Based on daily precipitation data at Shijiazhuang meteorological station in recent 51 years, average rainfall dudng growth periods of the 9 kinds of conventional crops was obtained. Precipitation tendency dudng growth periods of the 9 kinds of conventional crops in plain area before Taihang Mountains was analyzed by Mann-Kendall nonparametric test. [ Result] Seen from rainfall during growth pedods of the different crops, rainfall was the least during the growth period of winter wheat, followed by summer corn. Rainfall during growth peri- ods of the cotton, oil plant, vegetable, fruit tree, potato, rice and legumes was more. Under different guaranteed rates, precipitation change also had difference. Rainfall change during growth periods of the wheat and corn was bigger, and rainfall change during growth period of the rice was smaller. Change degree of the precipitation during growth periods of the cotton, oil plant, vegetable, fruit tree and legumes was equivalent, while precipitation change during growth period of the potato was the biggest. Seen from change tendency of the precipitation during growth periods of the different crops, precipitation in the growth period of winter wheat was increasing at a speed of 0.62 mm/a. However, precipitation in growth periods of the other crops had a decreasing tendency. Precipitation in the growth periods of summer corn and legumes decreased at the same speed which was 2.11 mm/a, while precipitation in growth periods of the cotton, oil plant, vegetable, fruit tree, potato and rice decreased insignificantly. [ Con dusion] The study laid foundation for determination of the agricultural irrigation water and provided theoretical reference for regional agricultural water-saving.展开更多
基金funded by the National Basic Research Program(2015CB452706)Hebei Social Science Fund Project(HB17GL020)Hebei Province Natural Science Foundation(D2018403031)。
文摘A rational utilization of land is a matter of importance in sustainable development of mountainous area.The land function in mountainous areas has a close connection with space structure of ecology,production and living.To promote a harmonious development of the relationship between people and nature in mountainous areas,it is necessary to coordinate their relationships of space functions.Suitability evaluation of basic unit function associated with multi-scale space analysis is a prerequisite to a reasonable optimization of land function structure.In this study,an optimized evaluation index system of combination functions was introduced into the assessment of ecological spatial functional suitability in ecological fragile regions by adding three indicators,namely,soil erosion sensitivity,landscape ecological risk and ecological sensitivity.The principle of"taking high"(referred to a function with high suitability to be regarded as the main function of an evaluation unit)and ecological priority(referred to the case,supposing the suitability of a unit’s three functions is consistent,the main function is determined to be the ecological function)were used to determine the main function of an evaluation unit.Pingshan County,China,located at the eastern foot of the Taihang Mountain,was targeted in this case study.The production-livingecology space(PLES)function in Pingshan was identified by applying our improved valuation indexes.Further,the functional suitability distribution of the combination of elements was obtained by using overlapping comprehensive analysis method,considering the tradeoff of the functional suitability of combination elements.The regions suitable for production/living were distributed in relatively flat piedmont plains,whereas the regions suitable for ecology were distributed in the mountain areas of middle and low altitudes.Therefore,to maintain a sustainable development in mountainous areas,an improved scheme of development for Pingshan should be to delineate ecologically fragile areas,to build ecological industrial parks near existing scenic spots,to protect basic agricultural production areas,and to increase investment in science and technology,including reasonable ecological compensation.This study can provide reference for the planning of sustainable development in the Taihang Mountain area and similar regions.
基金supported by the national Knowledge Innovation Project (KIP) at the Chinese Academy of Sciences (CAS) (No. KZCX2-YW-Q06-2)Project of Northeast Institute of Geography and Agroecology, CAS (No. KZCX3-SW-NA3-29)
文摘In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysime- ters in the Taihang Mountain area, China. They are a local grass, Themedajaponica, a local shrub, Vitex negundo var. heterophylla Rebd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.
基金Supported by National Science and Technology Support Plan Item, China ( 2007BAD69B09)Soft Science Research Plan Project in Hebei Province,China (10457204D-30,114572124)
文摘[Objective] The aim was to study change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. [ Method] Based on daily precipitation data at Shijiazhuang meteorological station in recent 51 years, average rainfall dudng growth periods of the 9 kinds of conventional crops was obtained. Precipitation tendency dudng growth periods of the 9 kinds of conventional crops in plain area before Taihang Mountains was analyzed by Mann-Kendall nonparametric test. [ Result] Seen from rainfall during growth pedods of the different crops, rainfall was the least during the growth period of winter wheat, followed by summer corn. Rainfall during growth peri- ods of the cotton, oil plant, vegetable, fruit tree, potato, rice and legumes was more. Under different guaranteed rates, precipitation change also had difference. Rainfall change during growth periods of the wheat and corn was bigger, and rainfall change during growth period of the rice was smaller. Change degree of the precipitation during growth periods of the cotton, oil plant, vegetable, fruit tree and legumes was equivalent, while precipitation change during growth period of the potato was the biggest. Seen from change tendency of the precipitation during growth periods of the different crops, precipitation in the growth period of winter wheat was increasing at a speed of 0.62 mm/a. However, precipitation in growth periods of the other crops had a decreasing tendency. Precipitation in the growth periods of summer corn and legumes decreased at the same speed which was 2.11 mm/a, while precipitation in growth periods of the cotton, oil plant, vegetable, fruit tree, potato and rice decreased insignificantly. [ Con dusion] The study laid foundation for determination of the agricultural irrigation water and provided theoretical reference for regional agricultural water-saving.