The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progr...The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry.展开更多
Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using m...Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using mill tailings especially in metal mining is one of the best techniques.The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environmental problems in terms of land degradation,air and water pollution,etc.This disposal practice is more acute in the metal milling industry where the fine grinding,required for value liberation,results in the production of very fine tailings in large percentage.This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations.The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.展开更多
Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-ag...Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB.展开更多
Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process ca...Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic,thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.展开更多
Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to di...Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to disturbance by dynamic loading,such as excavation and blasting.In this study,the authors present the results of a series of Split-Hopkinson pressure bar(SHPB)single and cyclic impact loading tests on CTB specimens to investigate the long-term dynamic mechanical properties of CTB.The stress-strain relationship,dynamic strength,and dynamic failure characteristics of CTB specimens are analyzed and discussed to provide valuable conclusions that will improve our knowledge of CTB long-term mechanical behavior and characteristics.For instance,the dynamic peak stress under cyclic impact loading is approximately twice that under single impact loading,and the CTB specimens are less prone to fracture when cyclically loaded.These findings and conclusions can provide a new set of references for the stability analysis of CTB materials and help guide mine designers in reducing the amount of binding agents and the associated mining cost.展开更多
The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image c...The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image correlation measurement,and scanning electron microscope characteristics of fiber-reinforced CTB(FRCTB),was conducted to obtain the uniaxial compressive strength(UCS),failure evolution,and microstructural characteristics of FRCTB specimens.The results show that adding fibers could increase the UCS values of the CTB by 6.90%to 32.76%.The UCS value of the FRCTB increased with the increase in the polypropylene(PP)fiber content.Moreover,the reinforcement effect of PP fiber on the CTB was better than that of glass fiber.The addition of fiber could increase the peak strain of the FRCTB by0.39%to 1.45%.The peak strain of the FRCTB increased with the increase in glass fiber content.The failure pattern of the FRCTB was coupled with tensile and shear failure.The addition of fiber effectively inhibited the propagation of cracks,and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB.The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods.展开更多
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat...It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.展开更多
Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm...Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.展开更多
For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining techniq...For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.展开更多
The amount of inert quartz tailing used in concrete construction is limited due to the low strength development of cementitious materials that may be caused by the quartz tailing. We manage to increase the strength of...The amount of inert quartz tailing used in concrete construction is limited due to the low strength development of cementitious materials that may be caused by the quartz tailing. We manage to increase the strength of blended cement by modifying quartz tailing through solid-phase reaction of quartz tailing with carbide slag at high temperature. The mineral composition and morphology of the modified quartz tailing were examined by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The mechanical properties and microstructure of blended cement mortars containing modified quartz tailing were investigated. Results showed that the strengths of blended cement mortars containing modified quartz tailing were close to those of the corresponding blended cement mortars containing quartz tailing at early age of 3 d, but increased significantly to be similar to that of plain Portland cement mortars at late ages of 90 d. This is attributed to the microstructure densification and the enhancement of interface between quartz tailing and cement paste due to the hydration of b-C_2 S surface layer on modified quartz tailing.展开更多
Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative...Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.展开更多
In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested ...In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine.展开更多
The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement...The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.展开更多
This paper provides a review of the intrinsic and extrinsic factors affecting the uniaxial compressive strength(UCS)of cemented tailings backfill(CTB).The consideration is that once CTB is poured into underground stop...This paper provides a review of the intrinsic and extrinsic factors affecting the uniaxial compressive strength(UCS)of cemented tailings backfill(CTB).The consideration is that once CTB is poured into underground stopes,its strength is heavily influenced by factors internal to the CTB as well as the surrounding mining environments.Peer-reviewed journal articles,books,and conference papers published between 2000 and 2022 were searched electronically from various databases and reviewed.Additional sources,such as doctoral theses,were obtained from academic repositories.An important finding from the review is that the addition of fibers was reported to improve the UCS of CTB in some studies while decrease in others.This discrepancy was accounted to the different properties of fibers used.Further research is therefore needed to determine the“preferred”fiber to be used in CTB.Diverging findings were also reported on the effects of stope size on the UCS of CTB.Furthermore,the use of fly ash as an alternative binder may be threatened in the future when reliance on the coal power declines.Therefore,an alternative cementitious by-product to be used together with furnace slag may be required in the future.Finally,while most studies on backfill focused on single-layered structures,layered backfill design models should also be investigated.展开更多
In order to solve the problem of strength instability of cemented tailings backfill(CTB)under low temperature environment(≤20℃),the strength optimization and prediction of CTB under the influence of multiple factors...In order to solve the problem of strength instability of cemented tailings backfill(CTB)under low temperature environment(≤20℃),the strength optimization and prediction of CTB under the influence of multiple factors were carried out.The response surface method(RSM)was used to design the experiment to analyze the development law of backfill strength under the coupling effect of curing temperature,sand-cement ratio and slurry mass fraction,and to optimize the mix proportion;the artificial neural network algorithm(ANN)and particle swarm optimization algorithm(PSO)were used to build the prediction model of backfill strength.According to the experimental results of RSM,the optimal mix proportion under different curing temperatures was obtained.When the curing temperature is 10-15℃,the best mix proportion of sand-cement ratio is 9,and the slurry mass fraction is 71%;when the curing temperature is 15-20℃,the best mix proportion of sand-cement ratio is 8,and the slurry mass fraction is 69%.The ANN-PSO intelligent model can accurately predict the strength of CTB,its mean relative estimation error value and correlation coefficient value are only 1.95%and 0.992,and the strength of CTB under different mix proportion can be predicted quickly and accurately by using this model.展开更多
Facing the global warming trend,humanity has been paying more and more attention to the Carbon Capture,Utilization and Storage.Large amounts of CO_(2)is emitted with burning fossil fuel as well as by some special indu...Facing the global warming trend,humanity has been paying more and more attention to the Carbon Capture,Utilization and Storage.Large amounts of CO_(2)is emitted with burning fossil fuel as well as by some special industrial processes like the decomposition of calcium carbonate in a cement plant.The cement industry contributes about 7%of the total worldwide CO_(2)emissions and the CO_(2)concentration of flue gas of the cement kiln tail even exceeds 30%.Ionic liquid is considered to be an effective and potential material to capture CO_(2).In order to investigate the performance of ionic liquids for capturing CO_(2)from flue gas of the cement kiln tail,an experiment system was established and an ionic liquid,[APMIm][NTf_(2)](1-aminopropyl-3-imidazolium bis(trifluoromethylsulfonyl)imine),was tested using pure CO_(2)and simulated gas.The results showed that both physical and chemical absorption play roles while physical absorption dominates in the absorption process.Both the absorption capacity and rate decrease with raising the operating temperature.In the experiment with pure CO_(2),the absorption capacity is 0.296molCO_(2)⋅molIL−1 at 30℃ and 0.067molCO_(2)⋅molIL−1 at 70℃.Meanwhile,the ionic liquid can be regenerated for recycling without obvious changes of the absorption capacity.When the ionic liquid is used for flue gas of the cement kiln tail rather than pure CO_(2),a sharp decrease of the absorption capacity and rate was observed obviously.The absorption capacity at 30℃ dropped even to 0.038molCO_(2)⋅mol_(IL)^(−1),12.8%of that for pure CO_(2).Additionally,a natural desorption of CO_(2)from the ionic liquid was observed and affected the experimental results of the absorption capacity and the absorption-desorption rate to some extent.展开更多
基金Project(SKLCRSM13KFB05)supported by State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing)
文摘The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry.
文摘Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using mill tailings especially in metal mining is one of the best techniques.The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environmental problems in terms of land degradation,air and water pollution,etc.This disposal practice is more acute in the metal milling industry where the fine grinding,required for value liberation,results in the production of very fine tailings in large percentage.This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations.The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.
基金Project(51722401)supported by the National Science Foundation for Excellent Young Scholars of ChinaProject(51334001)supported by the Key Program of National Natural Science Foundation of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB.
基金Project(SKLCRSM13KFB05)supported by State Key Laboratory for Coal Resources and Safe Mining(China University of Mining&Technology)
文摘Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic,thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.
基金financially supported by the National Key R&D Program of China (No. 2017YFC0602900)the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-029A2)the Open Fund of Key Laboratory of High-Efficient Mining and Safety of Metal Mines (Ministry of Education of China, No. ustbmslab201803)
文摘Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to disturbance by dynamic loading,such as excavation and blasting.In this study,the authors present the results of a series of Split-Hopkinson pressure bar(SHPB)single and cyclic impact loading tests on CTB specimens to investigate the long-term dynamic mechanical properties of CTB.The stress-strain relationship,dynamic strength,and dynamic failure characteristics of CTB specimens are analyzed and discussed to provide valuable conclusions that will improve our knowledge of CTB long-term mechanical behavior and characteristics.For instance,the dynamic peak stress under cyclic impact loading is approximately twice that under single impact loading,and the CTB specimens are less prone to fracture when cyclically loaded.These findings and conclusions can provide a new set of references for the stability analysis of CTB materials and help guide mine designers in reducing the amount of binding agents and the associated mining cost.
基金financially supported by the National Natural Science Foundation of China(No.51804017)the Fundamental Research Funds for Central Universities,China(No.FRF-TP-20-001A2)the State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2021-04)。
文摘The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image correlation measurement,and scanning electron microscope characteristics of fiber-reinforced CTB(FRCTB),was conducted to obtain the uniaxial compressive strength(UCS),failure evolution,and microstructural characteristics of FRCTB specimens.The results show that adding fibers could increase the UCS values of the CTB by 6.90%to 32.76%.The UCS value of the FRCTB increased with the increase in the polypropylene(PP)fiber content.Moreover,the reinforcement effect of PP fiber on the CTB was better than that of glass fiber.The addition of fiber could increase the peak strain of the FRCTB by0.39%to 1.45%.The peak strain of the FRCTB increased with the increase in glass fiber content.The failure pattern of the FRCTB was coupled with tensile and shear failure.The addition of fiber effectively inhibited the propagation of cracks,and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB.The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods.
基金Projects(2018YFC0808403,2018YFE0123000)supported by the National Key Technologies Research&Development Program of ChinaProject(800015Z1185)supported by the Yueqi Young Scholar Project,ChinaProject(2020YJSNY04)supported by the Fundamental Research Funds for the Central Universities,China。
文摘It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.
基金Projects(51974225,51674188,51874229,51904224,51904225,51704229)supported by the National Natural Science Foundation of ChinaProject(2018KJXX-083)supported by the Shaanxi Innovative Talents Cultivate Program-New-Star Plan of Science and Technology,China+2 种基金Projects(2018JM5161,2018JQ5183,2015JM-074)supported by the Natural Science Basic Research Plan of Shaanxi Province,ChinaProject(19JK0543)supported by the Scientific Research Program funded by Education Department of Shaanxi Province,ChinaProject(2018YQ201)supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China。
文摘Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the National Natural Science Foundation of China(No.51804017)。
文摘For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.
基金Funded by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+4 种基金Scientific Research Foundation of Education Department of Anhui Province-(No.KJ2013A257)the State Key Laboratory of MaterialsOriented Chemical Engineering(No.KL12-12)National Natural Science Foundation of China(Nos.51608004,51578004)Opening Foundation of State Key Laboratory of High Performance Civil Engineering Materials(No.2014CEM010)Natural Science Foundation of the Anhui Higher Education Institution(No.KJ2016A818)
文摘The amount of inert quartz tailing used in concrete construction is limited due to the low strength development of cementitious materials that may be caused by the quartz tailing. We manage to increase the strength of blended cement by modifying quartz tailing through solid-phase reaction of quartz tailing with carbide slag at high temperature. The mineral composition and morphology of the modified quartz tailing were examined by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The mechanical properties and microstructure of blended cement mortars containing modified quartz tailing were investigated. Results showed that the strengths of blended cement mortars containing modified quartz tailing were close to those of the corresponding blended cement mortars containing quartz tailing at early age of 3 d, but increased significantly to be similar to that of plain Portland cement mortars at late ages of 90 d. This is attributed to the microstructure densification and the enhancement of interface between quartz tailing and cement paste due to the hydration of b-C_2 S surface layer on modified quartz tailing.
基金financially supported by the China’s National Key Research and Development Program(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134).
文摘Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.
基金Projects(2013BAB02B05,2012BAB08B01)supported by the National Science and Technology Support Program of ChinaProject(2013JSJJ029)supported by the Teacher Foundation of Central South University,ChinaProject(51074177)supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group Corporation,China
文摘In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine.
基金financially supported by the National Natural Science Foundation of China (Nos.52004272,52122404,52061135111,52174092,and 52074259)the Natural Science Foundation of Jiangsu Province,China (Nos.BK20200660 and BK20220157)+1 种基金the Xuzhou Science and Technology Project,China (Nos.KC22005 and KC21033)the Open Foundation of Shandong Key Laboratory of Mining Disaster Prevention and Control,China (No.SMDPC 202104)。
文摘The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.
文摘This paper provides a review of the intrinsic and extrinsic factors affecting the uniaxial compressive strength(UCS)of cemented tailings backfill(CTB).The consideration is that once CTB is poured into underground stopes,its strength is heavily influenced by factors internal to the CTB as well as the surrounding mining environments.Peer-reviewed journal articles,books,and conference papers published between 2000 and 2022 were searched electronically from various databases and reviewed.Additional sources,such as doctoral theses,were obtained from academic repositories.An important finding from the review is that the addition of fibers was reported to improve the UCS of CTB in some studies while decrease in others.This discrepancy was accounted to the different properties of fibers used.Further research is therefore needed to determine the“preferred”fiber to be used in CTB.Diverging findings were also reported on the effects of stope size on the UCS of CTB.Furthermore,the use of fly ash as an alternative binder may be threatened in the future when reliance on the coal power declines.Therefore,an alternative cementitious by-product to be used together with furnace slag may be required in the future.Finally,while most studies on backfill focused on single-layered structures,layered backfill design models should also be investigated.
基金the National Key Technology Research and Development Program of China(Nos.2018YFC1900603 and 2018YFC0604604)。
文摘In order to solve the problem of strength instability of cemented tailings backfill(CTB)under low temperature environment(≤20℃),the strength optimization and prediction of CTB under the influence of multiple factors were carried out.The response surface method(RSM)was used to design the experiment to analyze the development law of backfill strength under the coupling effect of curing temperature,sand-cement ratio and slurry mass fraction,and to optimize the mix proportion;the artificial neural network algorithm(ANN)and particle swarm optimization algorithm(PSO)were used to build the prediction model of backfill strength.According to the experimental results of RSM,the optimal mix proportion under different curing temperatures was obtained.When the curing temperature is 10-15℃,the best mix proportion of sand-cement ratio is 9,and the slurry mass fraction is 71%;when the curing temperature is 15-20℃,the best mix proportion of sand-cement ratio is 8,and the slurry mass fraction is 69%.The ANN-PSO intelligent model can accurately predict the strength of CTB,its mean relative estimation error value and correlation coefficient value are only 1.95%and 0.992,and the strength of CTB under different mix proportion can be predicted quickly and accurately by using this model.
基金Project 2016YFB0601504 supported by National Key R&D Program of China is gratefully acknowledged.The authors are also grateful for the help about the NMR test from Dr.WAN Qiang in Institute of Chemistry,Chinese Academy of Sciences.
文摘Facing the global warming trend,humanity has been paying more and more attention to the Carbon Capture,Utilization and Storage.Large amounts of CO_(2)is emitted with burning fossil fuel as well as by some special industrial processes like the decomposition of calcium carbonate in a cement plant.The cement industry contributes about 7%of the total worldwide CO_(2)emissions and the CO_(2)concentration of flue gas of the cement kiln tail even exceeds 30%.Ionic liquid is considered to be an effective and potential material to capture CO_(2).In order to investigate the performance of ionic liquids for capturing CO_(2)from flue gas of the cement kiln tail,an experiment system was established and an ionic liquid,[APMIm][NTf_(2)](1-aminopropyl-3-imidazolium bis(trifluoromethylsulfonyl)imine),was tested using pure CO_(2)and simulated gas.The results showed that both physical and chemical absorption play roles while physical absorption dominates in the absorption process.Both the absorption capacity and rate decrease with raising the operating temperature.In the experiment with pure CO_(2),the absorption capacity is 0.296molCO_(2)⋅molIL−1 at 30℃ and 0.067molCO_(2)⋅molIL−1 at 70℃.Meanwhile,the ionic liquid can be regenerated for recycling without obvious changes of the absorption capacity.When the ionic liquid is used for flue gas of the cement kiln tail rather than pure CO_(2),a sharp decrease of the absorption capacity and rate was observed obviously.The absorption capacity at 30℃ dropped even to 0.038molCO_(2)⋅mol_(IL)^(−1),12.8%of that for pure CO_(2).Additionally,a natural desorption of CO_(2)from the ionic liquid was observed and affected the experimental results of the absorption capacity and the absorption-desorption rate to some extent.