Data organization requires high efficiency for large amount of data applied in the digital mine system. A new method of storing massive data of block model is proposed to meet the characteristics of the database, incl...Data organization requires high efficiency for large amount of data applied in the digital mine system. A new method of storing massive data of block model is proposed to meet the characteristics of the database, including ACID-compliant, concurrency support, data sharing, and efficient access. Each block model is organized by linear octree, stored in LMDB(lightning memory-mapped database). Geological attribute can be queried at any point of 3D space by comparison algorithm of location code and conversion algorithm from address code of geometry space to location code of storage. The performance and robustness of querying geological attribute at 3D spatial region are enhanced greatly by the transformation from 3D to 2D and the method of 2D grid scanning to screen the inner and outer points. Experimental results showed that this method can access the massive data of block model, meeting the database characteristics. The method with LMDB is at least 3 times faster than that with etree, especially when it is used to read. In addition, the larger the amount of data is processed, the more efficient the method would be.展开更多
Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurre...Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurred as the result of movements of large-scale get-blocks under the impact of external pulses (such as a deep confined explosion, earthquakes, rock bursts and etc.). ALF phenomenon obtained its name to describe the curious phenomenon that the friction between interacting get-blocks qua- si-periodically disappears at some discrete points in time along the direction orthogonal to the direction of the external pulse. With the objective to confirm the existence of the ALF phenomenon and study the get-mechanical conditions for its occurrence experi- mentally and theoretically, laboratory tests on granite and cement mortar block models were carried out on a multipurpose testing system developed independently. The ALF phenomenon was realized under two loading schemes, i.e., blocks model and a working block were acted upon jointly by the action of a vertical impact and a horizontal static force, as well as the joint action of both ver- tical and horizontal impacts with differently delayed time intervals. We obtained the rules on variation of horizontal displacements of working blocks when the ALF phenomenon was realized in two tests. The discrete time delay intervals, corresponding to local maxima and minima of the horizontal displacement amplitudes and residual horizontal displacements of the working block, satis- fied canonical sequences multiplied by (√2)'. Some of these time intervals satisfied the quantitative expression (√2)' ,alva. At last, 1D dynamic theoretical model was established, the analytical results agreed better with the test data, while the quantitative expression drawn from test data was not validated well in theoretical analyses.展开更多
Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse w...Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a phenomenon of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently. The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplitudes and Fourier spectra) of stress wave in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardarce of high frequency waves. We compared our model test data with the data of in-situ measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendulum-type wave. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration satisfied several canonical sequences with the multiple of 2~(1/2), most of those frequencies satisfied the quantitative expression (2~(1/2))i V p/2△ .展开更多
Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-...Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-band vibration and sound radiation reduction effect of vibration isolation masses located in a base structure was researched.The influence of the blocking mass’ cross-section size and shape parameters and the layout location of the base isolation performance was discussed.Furthermore,the effectiveness of rigid vibration isolation design of the base structure was validated.The results show that the medium and high frequency vibration and sound radiation of a power cabin are effectively reduced by a blocking mass.Concerning weight increment and section requirement,suitably increasing the blocking mass size and section height and reducing section width can result in an efficiency-cost ratio.展开更多
Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of t...Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.展开更多
This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- bl...This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands.展开更多
In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitud...In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitude adjusting mechanisms, such as the lateral pulse jet, have complex impact on the airflow layer of the projectile surface caused by the thrust vector jet flow. An improved two-dimensional trajectory correction mechanism is designed based on the principle of firing mass blocks by a tailor-made propellant. The mechanical properties of the thrust force(namely the correction force) is analyzed. The trajectory correction model is established to analyze the effects of correction starting moment and correction phase angle of a thrust force on the projectile's trajectory. According to the trajectory correction scheme, an improved genetic algorithm is employed to this work. The scheme is tested in the simulation. The results show that the correction scheme is effective to reduce target dispersion and increase the precision of the impact point.展开更多
Based on wave theory, blocking mass impeding propagation of flexural waves was analyzed with force excitation applied on a ship pedestal. The analysis model of a complex structure was developed by combining statistica...Based on wave theory, blocking mass impeding propagation of flexural waves was analyzed with force excitation applied on a ship pedestal. The analysis model of a complex structure was developed by combining statistical energy analysis and the finite element method. Based on the hybrid FE-SEA method, the vibro-acoustic response of a complex structure was solved. Then, the sound radiation of a cylindrical shell model influenced by blocking mass was calculated in mid/high frequency. The result shows that blocking mass has an obvious effect on impeding propagation. The study provides a theoretical and experimental basis for application of the blocking mass to structure-borne sound propagation control.展开更多
The displacements and geometry of the rock blocks and the properties of the rock struc-ture play an important role in the stability of tunnels.Based on the key block model,the dynamic instability analysis of undergrou...The displacements and geometry of the rock blocks and the properties of the rock struc-ture play an important role in the stability of tunnels.Based on the key block model,the dynamic instability analysis of underground tunnel subjected to intensive short-time compressional wave was conducted.The instability of the tunnel caused by the spallation and the inertial effect was distin-guished.And the influence of the roof contour curvature of tunnel was also determined.展开更多
The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock m...The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.展开更多
AIM:To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry(LC-MS/MS).METHODS:Three normal lenses and thr...AIM:To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry(LC-MS/MS).METHODS:Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins.Protein concentrations were separated using two-dimensional gel electrophoresis(2-DE).The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots.These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin.The digested peptide separation was conducted by LC-MS/MS.RESULTS:The 2-DE maps showed that lens proteins were in a p H range of 3-10 with a relative molecular weight of21-70 kD.The relative molecular weight of the more abundant proteins was localized at 25-50 kD,and the isoelectric points were found to lie between PI 4-9.The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses.The 29 points were identified by LC-MS/MS,and ten of these proteins were identified by mass spectrometry and database queries:beta-crystallin B1,glyceraldehyde-3-phosphate dehydrogenase,carbonyl reductase(NADPH)1,c DNA FLJ55253,gamma-crystallin D,GAS2-like protein 3,sorbitol dehydrogenase,DNA FLJ60282,phosphoglycerate kinase,and filensin.CONCLUSION:The level of the ten proteins may play an important role in the development of liquefied aftercataracts.展开更多
In the present study,the dynamic response of block foundations of different equivalent radius to mass(R;/m) ratios under coupled vibrations is investigated for various homogeneous and layered systems.The frequency-d...In the present study,the dynamic response of block foundations of different equivalent radius to mass(R;/m) ratios under coupled vibrations is investigated for various homogeneous and layered systems.The frequency-dependent stiffness and damping of foundation resting on homogeneous soils and rocks are determined using the half-space theory.The dynamic response characteristics of foundation resting on the layered system considering rock-rock combination are evaluated using finite element program with transmitting boundaries.Frequencies versus amplitude responses of block foundation are obtained for both translational and rotational motion.A new methodology is proposed for determination of dynamic response of block foundations resting on soil-rock and weathered rock-rock system in the form of equations and graphs.The variations of dimensionless natural frequency and dimensionless resonant amplitude with shear wave velocity ratio are investigated for different thicknesses of top soil/weathered rock layer.The dynamic behaviors of block foundations are also analyzed for different rock-rock systems by considering sandstone,shale and limestone underlain by basalt.The variations of stiffness,damping and amplitudes of block foundations with frequency are shown in this study for various rock—rock combinations.In the analysis,two resonant peaks are observed at two different frequencies for both translational and rotational motion.It is observed that the dimensionless resonant amplitudes decrease and natural frequencies increase with increase in shear wave velocity ratio.Finally,the parametric study is performed for block foundations with dimensions of 4 m × 3 m × 2 m and 8m×5m×2m by using generalized graphs.The variations of natural frequency and peak displacement amplitude are also studied for different top layer thicknesses and eccentric moments.展开更多
Deep rock mass tends to be broken into blocks when mining for materials deep below the surface.The rock layer of the roof of the mine can be regarded as a system of blocks of fractured rock mass.When subjected to high...Deep rock mass tends to be broken into blocks when mining for materials deep below the surface.The rock layer of the roof of the mine can be regarded as a system of blocks of fractured rock mass.When subjected to high ground stress and mining-induced disturbance,the efect of the ultra-low friction of the block system easily becomes apparent,and can induce rock burst and other accidents.By taking the block of rock mass as research object,this study developed a test system for ultra-low friction to experimentally examine its efects on the broken blocks under stress wave-induced disturbance.We used the horizontal displacement of the working block as the characteristic parameter refecting the efect of ultra-low friction,and examine its characteristic laws of horizontal displacement,acceleration,and energy when subjected to the efects of ultra-low friction by changing the frequency and amplitude of the stress wave-induced disturbance.The results show that the frequency of stress wave-induced disturbance is related to the generation of ultra-low friction in the broken block.The frequency of disturbance of the stress wave is within 1–3 Hz,and signifcantly increases the maximum acceleration and horizontal displacement of the broken blocks.The greater the intensity of the stress wave-induced disturbance is,the higher is the degree of block fragmentation,and the more likely are efects of ultra-low friction to occur between the blocks.The greater the intensity of the horizontal impact load is,the higher is the degree of fragmentation of the rock mass,and the easier it is for the efects of ultra-low friction to occur.Stress wave-induced disturbance and horizontal impact are the main causes of sliding instability of the broken blocks.When the dominant frequency of the kinetic energy of the broken block is within 20 Hz,the efects of ultra-low friction are more likely.展开更多
基金Projects(41572317,51374242)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,China
文摘Data organization requires high efficiency for large amount of data applied in the digital mine system. A new method of storing massive data of block model is proposed to meet the characteristics of the database, including ACID-compliant, concurrency support, data sharing, and efficient access. Each block model is organized by linear octree, stored in LMDB(lightning memory-mapped database). Geological attribute can be queried at any point of 3D space by comparison algorithm of location code and conversion algorithm from address code of geometry space to location code of storage. The performance and robustness of querying geological attribute at 3D spatial region are enhanced greatly by the transformation from 3D to 2D and the method of 2D grid scanning to screen the inner and outer points. Experimental results showed that this method can access the massive data of block model, meeting the database characteristics. The method with LMDB is at least 3 times faster than that with etree, especially when it is used to read. In addition, the larger the amount of data is processed, the more efficient the method would be.
基金Projects 50525825 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National Basic Research Program of ChinaBK2008002 by the Natural Science Foundation of Jiangsu Province
文摘Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurred as the result of movements of large-scale get-blocks under the impact of external pulses (such as a deep confined explosion, earthquakes, rock bursts and etc.). ALF phenomenon obtained its name to describe the curious phenomenon that the friction between interacting get-blocks qua- si-periodically disappears at some discrete points in time along the direction orthogonal to the direction of the external pulse. With the objective to confirm the existence of the ALF phenomenon and study the get-mechanical conditions for its occurrence experi- mentally and theoretically, laboratory tests on granite and cement mortar block models were carried out on a multipurpose testing system developed independently. The ALF phenomenon was realized under two loading schemes, i.e., blocks model and a working block were acted upon jointly by the action of a vertical impact and a horizontal static force, as well as the joint action of both ver- tical and horizontal impacts with differently delayed time intervals. We obtained the rules on variation of horizontal displacements of working blocks when the ALF phenomenon was realized in two tests. The discrete time delay intervals, corresponding to local maxima and minima of the horizontal displacement amplitudes and residual horizontal displacements of the working block, satis- fied canonical sequences multiplied by (√2)'. Some of these time intervals satisfied the quantitative expression (√2)' ,alva. At last, 1D dynamic theoretical model was established, the analytical results agreed better with the test data, while the quantitative expression drawn from test data was not validated well in theoretical analyses.
基金Projects 50525825 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National Basic Research Program of ChinaBK2008002 by the Natural Science Foundation of Jiangsu Province
文摘Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a phenomenon of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently. The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplitudes and Fourier spectra) of stress wave in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardarce of high frequency waves. We compared our model test data with the data of in-situ measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendulum-type wave. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration satisfied several canonical sequences with the multiple of 2~(1/2), most of those frequencies satisfied the quantitative expression (2~(1/2))i V p/2△ .
基金Supported by the International Cooperation Program under Grant No.2007DFR80340the National Natural Science Foundation of China under Grant No.50779007
文摘Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-band vibration and sound radiation reduction effect of vibration isolation masses located in a base structure was researched.The influence of the blocking mass’ cross-section size and shape parameters and the layout location of the base isolation performance was discussed.Furthermore,the effectiveness of rigid vibration isolation design of the base structure was validated.The results show that the medium and high frequency vibration and sound radiation of a power cabin are effectively reduced by a blocking mass.Concerning weight increment and section requirement,suitably increasing the blocking mass size and section height and reducing section width can result in an efficiency-cost ratio.
文摘Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.
文摘This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands.
基金supported by the National Natural Science Foundation of China(11372142)
文摘In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitude adjusting mechanisms, such as the lateral pulse jet, have complex impact on the airflow layer of the projectile surface caused by the thrust vector jet flow. An improved two-dimensional trajectory correction mechanism is designed based on the principle of firing mass blocks by a tailor-made propellant. The mechanical properties of the thrust force(namely the correction force) is analyzed. The trajectory correction model is established to analyze the effects of correction starting moment and correction phase angle of a thrust force on the projectile's trajectory. According to the trajectory correction scheme, an improved genetic algorithm is employed to this work. The scheme is tested in the simulation. The results show that the correction scheme is effective to reduce target dispersion and increase the precision of the impact point.
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (1530****0031)
文摘Based on wave theory, blocking mass impeding propagation of flexural waves was analyzed with force excitation applied on a ship pedestal. The analysis model of a complex structure was developed by combining statistical energy analysis and the finite element method. Based on the hybrid FE-SEA method, the vibro-acoustic response of a complex structure was solved. Then, the sound radiation of a cylindrical shell model influenced by blocking mass was calculated in mid/high frequency. The result shows that blocking mass has an obvious effect on impeding propagation. The study provides a theoretical and experimental basis for application of the blocking mass to structure-borne sound propagation control.
基金Supported by Beijing Natural Science Foundation and Key Program of Scientific Planning of Beijing Education Committee (No.KZ200810016007)
文摘The displacements and geometry of the rock blocks and the properties of the rock struc-ture play an important role in the stability of tunnels.Based on the key block model,the dynamic instability analysis of underground tunnel subjected to intensive short-time compressional wave was conducted.The instability of the tunnel caused by the spallation and the inertial effect was distin-guished.And the influence of the roof contour curvature of tunnel was also determined.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41941019,42177142)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102212213).
文摘The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.
基金Supported by National Natural Science Foundation of China(No.81370996)
文摘AIM:To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry(LC-MS/MS).METHODS:Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins.Protein concentrations were separated using two-dimensional gel electrophoresis(2-DE).The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots.These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin.The digested peptide separation was conducted by LC-MS/MS.RESULTS:The 2-DE maps showed that lens proteins were in a p H range of 3-10 with a relative molecular weight of21-70 kD.The relative molecular weight of the more abundant proteins was localized at 25-50 kD,and the isoelectric points were found to lie between PI 4-9.The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses.The 29 points were identified by LC-MS/MS,and ten of these proteins were identified by mass spectrometry and database queries:beta-crystallin B1,glyceraldehyde-3-phosphate dehydrogenase,carbonyl reductase(NADPH)1,c DNA FLJ55253,gamma-crystallin D,GAS2-like protein 3,sorbitol dehydrogenase,DNA FLJ60282,phosphoglycerate kinase,and filensin.CONCLUSION:The level of the ten proteins may play an important role in the development of liquefied aftercataracts.
文摘In the present study,the dynamic response of block foundations of different equivalent radius to mass(R;/m) ratios under coupled vibrations is investigated for various homogeneous and layered systems.The frequency-dependent stiffness and damping of foundation resting on homogeneous soils and rocks are determined using the half-space theory.The dynamic response characteristics of foundation resting on the layered system considering rock-rock combination are evaluated using finite element program with transmitting boundaries.Frequencies versus amplitude responses of block foundation are obtained for both translational and rotational motion.A new methodology is proposed for determination of dynamic response of block foundations resting on soil-rock and weathered rock-rock system in the form of equations and graphs.The variations of dimensionless natural frequency and dimensionless resonant amplitude with shear wave velocity ratio are investigated for different thicknesses of top soil/weathered rock layer.The dynamic behaviors of block foundations are also analyzed for different rock-rock systems by considering sandstone,shale and limestone underlain by basalt.The variations of stiffness,damping and amplitudes of block foundations with frequency are shown in this study for various rock—rock combinations.In the analysis,two resonant peaks are observed at two different frequencies for both translational and rotational motion.It is observed that the dimensionless resonant amplitudes decrease and natural frequencies increase with increase in shear wave velocity ratio.Finally,the parametric study is performed for block foundations with dimensions of 4 m × 3 m × 2 m and 8m×5m×2m by using generalized graphs.The variations of natural frequency and peak displacement amplitude are also studied for different top layer thicknesses and eccentric moments.
基金supported by the National Science Foundation of China(51974148)the Liaoning Xingliao Talent Program(XLYC1807130).
文摘Deep rock mass tends to be broken into blocks when mining for materials deep below the surface.The rock layer of the roof of the mine can be regarded as a system of blocks of fractured rock mass.When subjected to high ground stress and mining-induced disturbance,the efect of the ultra-low friction of the block system easily becomes apparent,and can induce rock burst and other accidents.By taking the block of rock mass as research object,this study developed a test system for ultra-low friction to experimentally examine its efects on the broken blocks under stress wave-induced disturbance.We used the horizontal displacement of the working block as the characteristic parameter refecting the efect of ultra-low friction,and examine its characteristic laws of horizontal displacement,acceleration,and energy when subjected to the efects of ultra-low friction by changing the frequency and amplitude of the stress wave-induced disturbance.The results show that the frequency of stress wave-induced disturbance is related to the generation of ultra-low friction in the broken block.The frequency of disturbance of the stress wave is within 1–3 Hz,and signifcantly increases the maximum acceleration and horizontal displacement of the broken blocks.The greater the intensity of the stress wave-induced disturbance is,the higher is the degree of block fragmentation,and the more likely are efects of ultra-low friction to occur between the blocks.The greater the intensity of the horizontal impact load is,the higher is the degree of fragmentation of the rock mass,and the easier it is for the efects of ultra-low friction to occur.Stress wave-induced disturbance and horizontal impact are the main causes of sliding instability of the broken blocks.When the dominant frequency of the kinetic energy of the broken block is within 20 Hz,the efects of ultra-low friction are more likely.