Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. T...Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. These faults were developed due to their reactivities, containing gouge and cutting the graben sediments. Detailed fieldwork demonstrates that the faults experienced sinistral transtensional moment related to regional NE-SW extension during the reactivity. X-ray diffraction (XRD) analysis of the finest gouge samples gives illite crystallinity values higher than 0.42°Δ2θ, indicating temperatures experienced by the gouge samples were less than 150°C. From the relation between K-Ar data and proportions of detrital illite in different size fractions of the gouge samples, we conclude that refaulting for the western boundary fault of the TLFZ, abbreviated to F4, took place at ca. 90 Ma and for the eastern boundary fault, abbreviated to F1, happened from 70 to 60 Ma. During the two phases of reactivity imposed by the same NE-SW extension, the TLFZ experienced uplifting and no sediments were deposited in the two grabens. It is suggested that the TLFZ experienced extension during the Late Cretaceous, which supports the inference that lithospheric thinning was still undergoing in the east of the North China Craton during the Late Cretaceous magmatic hiatus.展开更多
The Tan-Lu fault zone across the eastern margin of the Cenozoic basins offshore the Bohai Sea is a NNE-trending right-lateral strike-slip fault system developed in the Cenozoic basin cover. It cuts through NE-to NNE-s...The Tan-Lu fault zone across the eastern margin of the Cenozoic basins offshore the Bohai Sea is a NNE-trending right-lateral strike-slip fault system developed in the Cenozoic basin cover. It cuts through NE-to NNE-striking major extensional faults that controlled the formation of Paleogene basins. Recent petroleum exploration indicates that Cenozoic structural activities of the Tan-Lu fault system have directly or indirectly affected oil and gas distribution offshore the Bohai Sea. As part of a deep fault zone the Tan-Lu fault zone has been activated since the Oligocene,and obviously affected the tectonic evolution of offshore Bohai basins since then. The formation of Paleogene rift basins offshore the Bohai Sea has utilized the pre-existing structural elements of the Tan-Lu fault zone that developed in the late Mesozoic.展开更多
The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-...The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.展开更多
哀牢山—红河断裂带位于青藏高原东南缘,由青藏高原延入南海,是一条分割华南地块与印支地块的构造分界线,在地貌上也是一条醒目的分界线。纵向上由4个北西向的长条状变质带组成(雪龙山、点苍山、哀牢山和Day Nui Con Voi变质带),长约1...哀牢山—红河断裂带位于青藏高原东南缘,由青藏高原延入南海,是一条分割华南地块与印支地块的构造分界线,在地貌上也是一条醒目的分界线。纵向上由4个北西向的长条状变质带组成(雪龙山、点苍山、哀牢山和Day Nui Con Voi变质带),长约1 200 km。横向上分高级变质带和低级变质带,二者之间为倾向北东的哀牢山逆冲断裂带,其中高级变质带主要由元古界高级片麻岩、混合岩.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 90714004, 40672131)
文摘Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. These faults were developed due to their reactivities, containing gouge and cutting the graben sediments. Detailed fieldwork demonstrates that the faults experienced sinistral transtensional moment related to regional NE-SW extension during the reactivity. X-ray diffraction (XRD) analysis of the finest gouge samples gives illite crystallinity values higher than 0.42°Δ2θ, indicating temperatures experienced by the gouge samples were less than 150°C. From the relation between K-Ar data and proportions of detrital illite in different size fractions of the gouge samples, we conclude that refaulting for the western boundary fault of the TLFZ, abbreviated to F4, took place at ca. 90 Ma and for the eastern boundary fault, abbreviated to F1, happened from 70 to 60 Ma. During the two phases of reactivity imposed by the same NE-SW extension, the TLFZ experienced uplifting and no sediments were deposited in the two grabens. It is suggested that the TLFZ experienced extension during the Late Cretaceous, which supports the inference that lithospheric thinning was still undergoing in the east of the North China Craton during the Late Cretaceous magmatic hiatus.
基金Supported by National Natural Science Foundation of China (Grant No.40372072)National Basic Research Program of China (Grant No.2006CB202301)
文摘The Tan-Lu fault zone across the eastern margin of the Cenozoic basins offshore the Bohai Sea is a NNE-trending right-lateral strike-slip fault system developed in the Cenozoic basin cover. It cuts through NE-to NNE-striking major extensional faults that controlled the formation of Paleogene basins. Recent petroleum exploration indicates that Cenozoic structural activities of the Tan-Lu fault system have directly or indirectly affected oil and gas distribution offshore the Bohai Sea. As part of a deep fault zone the Tan-Lu fault zone has been activated since the Oligocene,and obviously affected the tectonic evolution of offshore Bohai basins since then. The formation of Paleogene rift basins offshore the Bohai Sea has utilized the pre-existing structural elements of the Tan-Lu fault zone that developed in the late Mesozoic.
基金supported by the National Natural Science Foundation of China(Grant Nos.41472186&91414301)the National Key Basic Research Program of China(Grant No.2016YFC0600102)
文摘The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.