The study projects a flexible and compact wearable pear-shaped Super High Frequency(SHF)antenna that can provide detailed location recognition and tracking applicable to defense beacon technology.This mini aperture wi...The study projects a flexible and compact wearable pear-shaped Super High Frequency(SHF)antenna that can provide detailed location recognition and tracking applicable to defense beacon technology.This mini aperture with electrical dimensions of 0.12λ_(0)×0.22λ_(0)×0.01λ_(0)attains a vast bandwidth over 3.1-34.5 GHz Super High Frequency(SHF)frequency band at S_(11)≤-10 dB,peak gain of 7.14 dBi and proportionately homogeneous radiation pattern.The fractional bandwidth(%BW)acquired is 168%that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations.The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished.The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards.The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions.Time response analysis is attained with its Fidelity Factor and Group Delay.Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m.Prototype is fabricated along with experimental validation.All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.展开更多
From the actual perspective of working principle of localizer beacon subsystem of Instrument Landing System (ILS), consideration of the distance information from localizer antenna to field monitor antenna and wide ape...From the actual perspective of working principle of localizer beacon subsystem of Instrument Landing System (ILS), consideration of the distance information from localizer antenna to field monitor antenna and wide aperture effect of localizer antenna, broke through the limitation of signals synthesized only far-field (FF), established the near-field (NF) model. The three-dimensional mathematical model of localizer beacon was designed, and the signals at both near-field and far-field were analyzed qualitatively. At the environment of Antenna Fault as well as Antenna Distribution Unit (ADU) phase shifter simulation, the characteristics of near-field and far-field were also compared. The simulation results showed that the model met the requirement of theory of localizer beacon, and the gap between two models was so evident, which resulted from the broken geometric symmetry in NF area. The model could provide valuable theoretical basis for performance evaluation and maintenance of the ILS, and meanwhile, provide reference for the further analysis of localizer beacon.展开更多
Nowadays, Global Positioning Systems (GPS) receivers are used for outdoor navigation, which are the part of recent smartphones and tablet devices. However, GPS is not suitable for indoor navigations due to its signal ...Nowadays, Global Positioning Systems (GPS) receivers are used for outdoor navigation, which are the part of recent smartphones and tablet devices. However, GPS is not suitable for indoor navigations due to its signal limitations which are blocked by ceiling and walls. Indoor navigation can be achieved through a mobile phone using a recent technology that utilizes Bluetooth, namely beacons. Beacons are small transmitters, run on Bluetooth Low Energy (BLE) technology, used as a point of reference for mobile devices and they can detect a Bluetooth enabled device once it enters its transmission range. In this paper, we present BeaLib: a beacon assisted indoor navigation technique for smart libraries. The proposed indoor navigation technique can also be used for other applications such as offices, retails, airports, hospitality, and education. For experimentation, beacons are placed in a library and a Bluetooth enabled smartphone is used to install a digital library application (App) which communicates with the beacons. The result shows that when the smartphone comes in the range of a beacon, it shows the information related to the book on the smartphone screen.展开更多
Agencies in Iowa have utilized both overhead flashing beacons and stop-sign mounted beacons. Although several studies have shown that overhead flashing beacons are effective, some concerns have been raised about drive...Agencies in Iowa have utilized both overhead flashing beacons and stop-sign mounted beacons. Although several studies have shown that overhead flashing beacons are effective, some concerns have been raised about driver confusion. The main concern is that a driver may interpret a multiface flashing beacon with a red indication for their approach as an all-way stop control. As a result, the Iowa DOT has been advocating use of stop-sign mounted beacons rather than overhead flashing beacons. Since little information is available about this countermeasure, data for intersections with (treatment) and without (control) stop-sign mounted beacons were identified and a cross-sectional analysis conducted (due to few confirmable installation dates). Rural stop-controlled intersections with stop-sign mounted beacons in Iowa (USA) were identified (40 in total). Intersection characteristics such as number of approaches, intersection angle etc. were extracted. Additionally, characteristics of individual approaches such as roadway surface (gravel/paved), advanced stop-sign rumble strips, and advance signing were recorded. One or more control locations were manually selected for each treatment intersection based on matching roadway configuration, presence of lighting, advance stop line rumble strips, number of approaches, channelization, traffic volume, and proximity. Propensity scores were estimated to match 40 control locations for comparison. Negative binomial models for different injury combinations at nighttime and daytime were developed with an indicator variable for presence and absence of stop-sign mounted beacons. Presence of stop-sign mounted beacons was associated with a 5% - 54% reduction in nighttime crashes. Injury nighttime crashes decreased by 54% and total nighttime crashes reduced by 18%.展开更多
Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis(MTB). Once the pathogen enters the body, it subverts the host immune defe...Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis(MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis(LTB). Persons with LTB are prone to reactivation of the disease when the body's immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The Yrb E and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4 A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic si RNAs has been used in knocking down genes in bacteria and over the years this has evolvedinto a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mR NA is rapidly gaining popularity.展开更多
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the c...Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.展开更多
基金the Defense Institute of Advanced Technology,Pune(DIAT,Pune)IIT Delhi。
文摘The study projects a flexible and compact wearable pear-shaped Super High Frequency(SHF)antenna that can provide detailed location recognition and tracking applicable to defense beacon technology.This mini aperture with electrical dimensions of 0.12λ_(0)×0.22λ_(0)×0.01λ_(0)attains a vast bandwidth over 3.1-34.5 GHz Super High Frequency(SHF)frequency band at S_(11)≤-10 dB,peak gain of 7.14 dBi and proportionately homogeneous radiation pattern.The fractional bandwidth(%BW)acquired is 168%that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations.The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished.The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards.The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions.Time response analysis is attained with its Fidelity Factor and Group Delay.Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m.Prototype is fabricated along with experimental validation.All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.
文摘From the actual perspective of working principle of localizer beacon subsystem of Instrument Landing System (ILS), consideration of the distance information from localizer antenna to field monitor antenna and wide aperture effect of localizer antenna, broke through the limitation of signals synthesized only far-field (FF), established the near-field (NF) model. The three-dimensional mathematical model of localizer beacon was designed, and the signals at both near-field and far-field were analyzed qualitatively. At the environment of Antenna Fault as well as Antenna Distribution Unit (ADU) phase shifter simulation, the characteristics of near-field and far-field were also compared. The simulation results showed that the model met the requirement of theory of localizer beacon, and the gap between two models was so evident, which resulted from the broken geometric symmetry in NF area. The model could provide valuable theoretical basis for performance evaluation and maintenance of the ILS, and meanwhile, provide reference for the further analysis of localizer beacon.
文摘Nowadays, Global Positioning Systems (GPS) receivers are used for outdoor navigation, which are the part of recent smartphones and tablet devices. However, GPS is not suitable for indoor navigations due to its signal limitations which are blocked by ceiling and walls. Indoor navigation can be achieved through a mobile phone using a recent technology that utilizes Bluetooth, namely beacons. Beacons are small transmitters, run on Bluetooth Low Energy (BLE) technology, used as a point of reference for mobile devices and they can detect a Bluetooth enabled device once it enters its transmission range. In this paper, we present BeaLib: a beacon assisted indoor navigation technique for smart libraries. The proposed indoor navigation technique can also be used for other applications such as offices, retails, airports, hospitality, and education. For experimentation, beacons are placed in a library and a Bluetooth enabled smartphone is used to install a digital library application (App) which communicates with the beacons. The result shows that when the smartphone comes in the range of a beacon, it shows the information related to the book on the smartphone screen.
文摘Agencies in Iowa have utilized both overhead flashing beacons and stop-sign mounted beacons. Although several studies have shown that overhead flashing beacons are effective, some concerns have been raised about driver confusion. The main concern is that a driver may interpret a multiface flashing beacon with a red indication for their approach as an all-way stop control. As a result, the Iowa DOT has been advocating use of stop-sign mounted beacons rather than overhead flashing beacons. Since little information is available about this countermeasure, data for intersections with (treatment) and without (control) stop-sign mounted beacons were identified and a cross-sectional analysis conducted (due to few confirmable installation dates). Rural stop-controlled intersections with stop-sign mounted beacons in Iowa (USA) were identified (40 in total). Intersection characteristics such as number of approaches, intersection angle etc. were extracted. Additionally, characteristics of individual approaches such as roadway surface (gravel/paved), advanced stop-sign rumble strips, and advance signing were recorded. One or more control locations were manually selected for each treatment intersection based on matching roadway configuration, presence of lighting, advance stop line rumble strips, number of approaches, channelization, traffic volume, and proximity. Propensity scores were estimated to match 40 control locations for comparison. Negative binomial models for different injury combinations at nighttime and daytime were developed with an indicator variable for presence and absence of stop-sign mounted beacons. Presence of stop-sign mounted beacons was associated with a 5% - 54% reduction in nighttime crashes. Injury nighttime crashes decreased by 54% and total nighttime crashes reduced by 18%.
文摘Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis(MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis(LTB). Persons with LTB are prone to reactivation of the disease when the body's immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The Yrb E and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4 A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic si RNAs has been used in knocking down genes in bacteria and over the years this has evolvedinto a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mR NA is rapidly gaining popularity.
文摘Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.