BACKGROUND Many studies have addressed safety and effectiveness of non-anaesthesiologist propofol sedation(NAPS)for gastrointestinal(GI)endoscopy Target controlled infusion(TCI)is claimed to provide an optimal sedatio...BACKGROUND Many studies have addressed safety and effectiveness of non-anaesthesiologist propofol sedation(NAPS)for gastrointestinal(GI)endoscopy Target controlled infusion(TCI)is claimed to provide an optimal sedation regimen by avoiding under-or oversedation.AIM To assess safety and performance of propofol TCI sedation in comparison with nurse-administered bolus-sedation.METHODS Fouty-five patients undergoing endoscopy under TCI propofol sedation were prospectively included from November 2016 to May 2017 and compared to 87 patients retrospectively included that underwent endoscopy with NAPS.Patients were matched for age and endoscopic procedure.We recorded time of sedation and endoscopy,dosage of medication and adverse events.RESULTS There was a significant reduction in dose per time of propofol administered in the TCI group,compared to the NAPS group(8.2±2.7 mg/min vs 9.3±3.4 mg/min;P=0.046).The time needed to provide adequate sedation levels was slightly but significantly lower in the control group(5.3±2.7 min vs 7.7±3.3 min;P<0.001),nonetheless the total endoscopy time was similar in both groups.No differences between TCI and bolus-sedation was observed for mean total-dosage of propofol rate as well as adverse events.CONCLUSION This study indicates that sedation using TCI for GI endoscopy reduces the dose of propofol necessary per minute of endoscopy.This may translate into less adverse events.However,further and randomized trials need to confirm this trend.展开更多
This study aimed to establish a new propofol target-controlled infusion(TCI) model in animals so as to study the general anesthetic mechanism at multi-levels in vivo. Twenty Japanese white rabbits were enrolled and ...This study aimed to establish a new propofol target-controlled infusion(TCI) model in animals so as to study the general anesthetic mechanism at multi-levels in vivo. Twenty Japanese white rabbits were enrolled and propofol(10 mg/kg) was administrated intravenously. Artery blood samples were collected at various time points after injection, and plasma concentrations of propofol were measured. Pharmacokinetic modeling was performed using Win Nonlin software. Propofol TCI within the acquired parameters integrated was conducted to achieve different anesthetic depths in rabbits, monitored by narcotrend. The pharmacodynamics was analyzed using a sigmoidal inhibitory maximal effect model for narcotrend index(NI) versus effect-site concentration. The results showed the pharmacokinetics of propofol in Japanese white rabbits was best described by a two-compartment model. The target plasma concentrations of propofol required at light anesthetic depth was 9.77±0.23 μg/m L, while 12.52±0.69 μg/m L at deep anesthetic depth. NI was 76.17±4.25 at light anesthetic depth, while 27.41±5.77 at deep anesthetic depth. The effect-site elimination rate constant(ke0) was 0.263/min, and the propofol dose required to achieve a 50% decrease in the NI value from baseline was 11.19 μg/m L(95% CI, 10.25–13.67). Our results established a new propofol TCI animal model and proved the model controlled the anesthetic depth accurately and stably in rabbits. The study provides a powerful method for exploring general anesthetic mechanisms at different anesthetic depths in vivo.展开更多
文摘BACKGROUND Many studies have addressed safety and effectiveness of non-anaesthesiologist propofol sedation(NAPS)for gastrointestinal(GI)endoscopy Target controlled infusion(TCI)is claimed to provide an optimal sedation regimen by avoiding under-or oversedation.AIM To assess safety and performance of propofol TCI sedation in comparison with nurse-administered bolus-sedation.METHODS Fouty-five patients undergoing endoscopy under TCI propofol sedation were prospectively included from November 2016 to May 2017 and compared to 87 patients retrospectively included that underwent endoscopy with NAPS.Patients were matched for age and endoscopic procedure.We recorded time of sedation and endoscopy,dosage of medication and adverse events.RESULTS There was a significant reduction in dose per time of propofol administered in the TCI group,compared to the NAPS group(8.2±2.7 mg/min vs 9.3±3.4 mg/min;P=0.046).The time needed to provide adequate sedation levels was slightly but significantly lower in the control group(5.3±2.7 min vs 7.7±3.3 min;P<0.001),nonetheless the total endoscopy time was similar in both groups.No differences between TCI and bolus-sedation was observed for mean total-dosage of propofol rate as well as adverse events.CONCLUSION This study indicates that sedation using TCI for GI endoscopy reduces the dose of propofol necessary per minute of endoscopy.This may translate into less adverse events.However,further and randomized trials need to confirm this trend.
基金supported by a grant from Shenzhen Baoan Hospital Affiliated to Southern Medical University
文摘This study aimed to establish a new propofol target-controlled infusion(TCI) model in animals so as to study the general anesthetic mechanism at multi-levels in vivo. Twenty Japanese white rabbits were enrolled and propofol(10 mg/kg) was administrated intravenously. Artery blood samples were collected at various time points after injection, and plasma concentrations of propofol were measured. Pharmacokinetic modeling was performed using Win Nonlin software. Propofol TCI within the acquired parameters integrated was conducted to achieve different anesthetic depths in rabbits, monitored by narcotrend. The pharmacodynamics was analyzed using a sigmoidal inhibitory maximal effect model for narcotrend index(NI) versus effect-site concentration. The results showed the pharmacokinetics of propofol in Japanese white rabbits was best described by a two-compartment model. The target plasma concentrations of propofol required at light anesthetic depth was 9.77±0.23 μg/m L, while 12.52±0.69 μg/m L at deep anesthetic depth. NI was 76.17±4.25 at light anesthetic depth, while 27.41±5.77 at deep anesthetic depth. The effect-site elimination rate constant(ke0) was 0.263/min, and the propofol dose required to achieve a 50% decrease in the NI value from baseline was 11.19 μg/m L(95% CI, 10.25–13.67). Our results established a new propofol TCI animal model and proved the model controlled the anesthetic depth accurately and stably in rabbits. The study provides a powerful method for exploring general anesthetic mechanisms at different anesthetic depths in vivo.