随着空间目标的数量逐渐增多、空中目标动态性日趋提升,对目标的观测定位问题变得愈发重要.由于需同时观测的目标多且目标动态性强,而星座观测资源有限,为了更高效地调用星座观测资源,需要动态调整多目标协同观测方案,使各目标均具有较...随着空间目标的数量逐渐增多、空中目标动态性日趋提升,对目标的观测定位问题变得愈发重要.由于需同时观测的目标多且目标动态性强,而星座观测资源有限,为了更高效地调用星座观测资源,需要动态调整多目标协同观测方案,使各目标均具有较好的定位精度,因此需解决星座协同观测多目标的任务规划问题.建立星座姿态轨道模型、目标飞行模型、目标协同探测及定位模型,提出基于几何精度衰减因子(geometric dilution of precision, GDOP)的目标观测定位误差预估模型及目标观测优先级模型,建立基于强化学习的协同观测任务规划框架,采用多头自注意力机制建立策略网络,以及近端策略优化算法开展任务规划算法训练.仿真验证论文提出的方法相比传统启发式方法提升了多目标观测精度和有效跟踪时间,相比遗传算法具有更快的计算速度.展开更多
Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the mod...Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.展开更多
文摘随着空间目标的数量逐渐增多、空中目标动态性日趋提升,对目标的观测定位问题变得愈发重要.由于需同时观测的目标多且目标动态性强,而星座观测资源有限,为了更高效地调用星座观测资源,需要动态调整多目标协同观测方案,使各目标均具有较好的定位精度,因此需解决星座协同观测多目标的任务规划问题.建立星座姿态轨道模型、目标飞行模型、目标协同探测及定位模型,提出基于几何精度衰减因子(geometric dilution of precision, GDOP)的目标观测定位误差预估模型及目标观测优先级模型,建立基于强化学习的协同观测任务规划框架,采用多头自注意力机制建立策略网络,以及近端策略优化算法开展任务规划算法训练.仿真验证论文提出的方法相比传统启发式方法提升了多目标观测精度和有效跟踪时间,相比遗传算法具有更快的计算速度.
文摘Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.